大模型本地部署
码龄3年
求更新 关注
提问 私信
  • 博客:1,850,265
    1,850,265
    总访问量
  • 1,600
    原创
  • 787
    排名
  • 7,339
    粉丝
  • 5
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2022-11-28

个人简介:大模型算法工程师 大模型本地部署 分享干货和经验 希望能够帮助到大家

博客简介:

youmaob的博客

查看详细资料
个人成就
  • 获得22,125次点赞
  • 内容获得43次评论
  • 获得21,422次收藏
  • 代码片获得6,298次分享
  • 原力等级
    原力等级
    9
    原力分
    9,715
    本月获得
    295
创作历程
  • 784篇
    2025年
  • 436篇
    2024年
  • 324篇
    2023年
  • 57篇
    2022年
成就勋章
TA的专栏
  • 人工智能
    3篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

TA的推广
兴趣领域 设置
  • 数据结构与算法
    算法
  • 人工智能
    人工智能语言模型
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 关注/订阅/互动
  • 收藏
  • 社区
  • 最近

  • 文章

  • 专栏

  • 关注/订阅/互动

  • 收藏

  • 社区

搜索 取消

【收藏必备】大模型平台入门到实战:轻松构建AI智能体

阿里云百炼作为一站式大模型商业化平台,有效解决了AI落地面临的计算资源、模型复杂性、系统集成和数据隐私等挑战。平台提供模型调优、评测、插件工具和便捷集成方式,降低AI开发门槛。文章通过旅游城市美食推荐系统案例,详细展示了如何使用阿里云百炼构建AI应用的全过程,助力开发者和企业快速掌握AI技术,抓住AI时代机遇。
原创
博文更新于 7 小时前 ·
433 阅读 ·
7 点赞 ·
0 评论 ·
17 收藏

打工第三年总结:AI赋能职场,从传统开发到大模型工程师的蜕变之路(建议收藏)

本文是作者打工第三年的年终总结,记录了从传统开发到大模型算法工程师的转型历程。文章分享了丰富的AI工具使用经验、面试技巧及AI Agent市场洞察。作者认为AI Agent将重塑职场,垂直领域可能创造超3000亿美元市场。文章鼓励程序员拥抱AI变革,利用大模型提升工作效率,并通过自媒体打造个人品牌,在AI时代保持竞争力。
原创
博文更新于 7 小时前 ·
168 阅读 ·
8 点赞 ·
0 评论 ·
14 收藏

【强烈收藏】大模型时代来临:程序员抓住风口,抢占先机

文章指出在当前行业裁员环境下,大模型领域反而是人才需求旺盛的就业风口。大模型是参数量达数十亿甚至千亿级别的AI模型,包括语言模型、图像识别模型和强化学习模型等。大模型发展迅速,技术迭代快,程序员应抓住这一学习机会。文章提供了大模型学习资源,包括成长路线图、视频教程和实战资料等,帮助零基础学习者系统掌握大模型技术,为未来就业做好准备。
原创
博文更新于 7 小时前 ·
510 阅读 ·
13 点赞 ·
0 评论 ·
4 收藏

大模型学习指南:小白也能懂的Transformer核心原理(值得收藏)

Transformer由Encoder、Decoder、位置编码模块组成Encoder用来对输入序列进行高纬度特征提取,并生成编码后的向量信息因为Encoder获取不到序列之间的位置信息,所以需要位置编码模块对其进行位置特征的补充,从而让模型能够拥有语义信息+位置信息的特征Decoder基于已生成的结果和Encoder的输入进行生成最终目标序列Self-Attention 可以同时关注序列中的所有元素,而不像传统的 RNN 或 LSTM 那样需要逐步处理。
原创
博文更新于 14 小时前 ·
438 阅读 ·
8 点赞 ·
0 评论 ·
13 收藏

收藏这份2025AI高薪指南!大厂抢人大战开启,小白程序员学习大模型正当时

2025年AI成为科技圈最热赛道,国内外巨头纷纷布局,带动AI就业市场火爆。核心人才紧缺,薪资持续攀升,大厂开出2倍薪资抢人。端侧AI市场将达万亿级别,形成全链路招聘需求,技术岗平均月薪近7万。AI红利期已至,从业者应深耕大模型、算法等核心领域,提升工程实践能力,抓住这一波高薪机会。
原创
博文更新于 14 小时前 ·
339 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

【干货收藏】企业AI架构实战指南:从框架搭建到场景落地的底层逻辑

总结一下,企业AI的架构不是“五层的堆砌”,而是**“业务→应用→插件→模型→数据→硬件”的 逆向推导**——先想“要解决什么业务问题”,再想“用什么应用”,再想“需要什么插件连接模 型和应用”,再想“选什么模型”,再想“需要什么数据”,最后想“买什么硬件”。比如一家零售企业要做“智能客服”,架构应该是这样的:•业务问题:减少客服重复咨询(比如“退换货政策”每天被问100次);•应用场景:智能客服Chatbot;•插件层:用本地工作流引擎(连接Whisper语音转文字+向量数据库+LLM);
原创
博文更新于 14 小时前 ·
715 阅读 ·
17 点赞 ·
0 评论 ·
15 收藏

速藏!裁员潮下的破局路:大模型岗位正在急招人

说实话,这阵子职场圈的氛围确实有点压抑——各大厂裁员的消息接连不断,不管是前端后端开发、测试工程师,还是运维人员,都可能被波及。但反常的是,,堪称裁员潮里的“避风港”。“我连大模型是什么都不知道,怎么入局?”别慌,这恰恰是你的机会。你不知道,说明市面上大部分人也没搞懂——。尤其是咱们程序员,对技术敏感度本就比常人高,更该抓住这次弯道超车的机会。经历过Java爆发、Python普及、大数据风口的老程序员都懂:每一次技术迭代,真正的黄金窗口期就那么1-2年。
原创
博文更新于 前天 14:18 ·
570 阅读 ·
15 点赞 ·
0 评论 ·
7 收藏

收藏备用!6种AI Agent核心模式详解,大模型入门必看

在这种灵活的方式中,智能体根据具体需求被组织进一个工作流中。部分流程具有确定性转移,而其他部分则允许智能体根据当前状态动态做出路由决策。img结合规则驱动与大模型(LLM)驱动的路由机制支持静态流程与动态智能体流的共存每个节点都可实现自定义逻辑灵活性最大化可完全自定义的流程逻辑混合系统、人机协作对话、可配置工作流等为了展示多智能体模式的价值,我们来看一个足球新闻机构的复杂系统工作流示例。信息采集智能体:收集如球员市值等详细信息球队信息智能体:检索球员当前所属球队文本撰写智能体。
原创
博文更新于 前天 14:13 ·
694 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

【必收藏】AI浪潮下大模型算法岗爆发!普通人如何抓住红利实现职业突破

文章探讨AI浪潮下大模型算法岗的蓬勃发展。国家政策支持"人工智能+"行动推动AI规模化应用,大模型技术爆发导致算法岗位需求激增、薪资提升。通过真术学员成功转型案例证明,普通人也能抓住AI红利实现职业突破,呼吁读者投身算法领域抓住历史机遇。
原创
博文更新于 前天 10:29 ·
449 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

【必学收藏】大模型应用开发实战:程序员抓住AI风口,实现职业跃迁

AI大模型正在重构技术开发范式,传统开发模式被AI原生应用取代。阿里、字节跳动等大公司80%技术岗与AI相关,AI技术岗薪资逆势上涨150%。传统程序员面临职业生存危机,急需掌握AI大模型原理、应用技术和项目实操经验。文章推广的大模型应用开发实战训练营旨在帮助程序员抓住AI风口,实现职业跃迁,应对行业转型挑战。
原创
博文更新于 前天 10:28 ·
640 阅读 ·
10 点赞 ·
0 评论 ·
10 收藏

【收藏必备】2025大模型学习指南:从底层逻辑到高薪应用,小白也能成为AI专家

人工智能时代已来,大模型将成为职场必备技能,如同PPT和Excel。不仅需"会用",更要"用好"甚至"微调"才能拉开差距。大模型应用需求爆发,从内部OA、ERP到外部客服、游戏NPC,各领域均有广泛应用。互联网高薪源于需求爆发与人才稀缺,学习前沿技术才能获高薪。选择专业课程学习大模型,能加速知识吸收,为职业发展奠定基础,掌握AI时代核心竞争力。
原创
博文更新于 前天 10:19 ·
893 阅读 ·
16 点赞 ·
0 评论 ·
4 收藏

【必学干货】当AI搜索变成“大海捞针“,这11把“渔网“让你的RAG效率翻倍!(建议收藏)

看完这11种策略,你可能会想:“我全都要!RAG优化不是堆砌策略,而是找到最适合你业务场景的组合。先建立基准线:用最简单的RAG跑通流程,测试准确率逐个添加策略:每次只加一种,看效果提升多少关注成本-效果比:不要为了1%的提升付出3倍的成本持续迭代:随着数据增长和场景变化,策略也要调整向量数据库:Postgres + pgvector(配合Neon托管服务)嵌入模型:OpenAI text-embedding-3 或开源的BGE系列重排序模型。
原创
博文更新于 2025.12.17 ·
358 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

速藏!Java程序员别卷CRUD了,大模型才是年薪翻倍的密码

领导说我写的接口太‘传统’,团队要招懂大模型的,我这五年Java经验难道要作废?周末的技术沙龙上,小张的提问让在场不少Java开发者频频点头。这个深耕电商后端的程序员,最近正遭遇职场“中年危机”的提前侵袭——他负责的订单系统重构项目,原本是稳拿的晋升筹码,却因架构里缺少AI能力,被新来的技术负责人要求重做方案,核心需求就是“把大模型集成进Java服务”。小张不是个例。
原创
博文更新于 2025.12.17 ·
850 阅读 ·
11 点赞 ·
0 评论 ·
8 收藏

从LLM到Agent:AI系统架构的四个核心阶段,建议收藏!

通过使用工具调用(Tool use)可以实现工作流自动化。通过对接各类 API(包括计算器、日历、邮件服务或搜索引擎等),LLM 可以利用可靠的外部工具,而非依赖其存在非确定性的原生能力。
原创
博文更新于 2025.12.17 ·
702 阅读 ·
17 点赞 ·
0 评论 ·
10 收藏

收藏级干货!10分钟读懂AI大模型:从名词到实践全解析

对于AI产品经理来说,我们的核心工作是应用大模型,而不是作为大模型的研究者。无论各研究团队推出了什么新的架构,对于产品来说都不重要,重要的是如何将其集成到现有的系统中。至于如何集成到系统,不同公司有不同的解决方案,这些就需要在工作中探索了。
原创
博文更新于 2025.12.16 ·
625 阅读 ·
19 点赞 ·
0 评论 ·
12 收藏

收藏!ChatGPT爆发后,程序员必看的大模型入门指南

自ChatGPT掀起AI热潮以来,短短一年多时间,企业与个人对AI学习和应用的认知已完成革命性升级。最初的"尝鲜式"探索,如今早已转化为职场人提升核心竞争力的迫切需求——在这个AI重构行业规则的时代,掌握大模型相关技术不再是"加分项",而是未来职业发展的"入场券",更是避免被行业淘汰的"护城河"。作为一名深耕业务开发多年的程序员,我始终密切追踪AI大模型的发展动态,也在工作中不断尝试落地实践。
原创
博文更新于 2025.12.16 ·
720 阅读 ·
23 点赞 ·
0 评论 ·
13 收藏

收藏!AI大模型人才缺口达35%,企业抢人白热化,零基础入门指南

AI行业薪资涨幅高达35%,企业高薪抢人现象普遍。零基础学习者掌握大模型技术,把握高薪就业机遇。
原创
博文更新于 2025.12.16 ·
799 阅读 ·
16 点赞 ·
0 评论 ·
15 收藏

程序员必看!AI产品经理训练营:收藏这份大模型学习指南,抓住AI时代红利

本文探讨AI作为新生产力方向的重要性,强调产品经理需了解AI底层技术才能设计合格产品。
原创
博文更新于 2025.12.16 ·
474 阅读 ·
20 点赞 ·
0 评论 ·
5 收藏

收藏!企业AI转型的真相:88%已应用,但93%未规模化,问题出在哪?

麦肯锡报告揭示,尽管88%企业已应用AI,但93%未实现规模化,仅6%成为"高绩效者"。62%企业尝试AI智能体,但不到10%能真正铺开。高绩效企业与其他企业的关键区别在于前者会重构工作流程来适应智能体,而非简单将AI工具插入现有流程。大多数AI项目失败不是因为技术问题,而是工作流设计缺乏"人味"。企业应像培养管培生一样培养智能体,明确职责、持续训练、严格考核。盲目跟风者会泡沫化,但Agent本身不会。
原创
博文更新于 2025.12.16 ·
1139 阅读 ·
36 点赞 ·
0 评论 ·
12 收藏

【珍藏指南】上下文工程:超越提示词工程的大模型应用新范式

文章介绍了上下文工程(CE)与提示词工程(PE)的区别与优势。CE通过五大模块(动态检索、记忆、工具使用、提示工程、上下文更新)实现系统化上下文管理,相比PE具有更高稳定性、扩展性和状态管理能力,且降低用户依赖。以AI Coding Agent为例,文章展示了CE如何通过收集显示/隐式上下文信息,提高AI输出质量,实现跨任务一致性。CE代表AI开发范式的转变,是让AI真正发挥价值的关键。
原创
博文更新于 2025.12.15 ·
778 阅读 ·
17 点赞 ·
0 评论 ·
18 收藏
加载更多