Bicubic interpolation
双三次插值是二维图像处理中常用的高阶插值方法,通过16个邻近像素(4×4)计算插值点,比双线性插值(2×2)和最近邻插值更平滑。其数学原理是在单位正方形四个角点匹配函数值、一阶和二阶导数,构建双三次多项式曲面。通过求解16个系数的线性方程组,可获得连续且导数连续的插值结果。该方法在图像重采样中能提供更高质量的视觉效果,但计算复杂度较高,且可能引入特定插值伪影。
Ascend
DSA
MMCV
CUDA
LLM
NVIDIA
cuBLAS
CUTLASS
GEMM
onnxruntime
OneFlow
Hisilicon
Valgrind
MNN
Rockchip
TNN
FlatBuffers
Roofline
TensorFlow
ncnn
PaddlePaddle
oneDNN
opencv
ubuntu
Microsoft office
debian
latex
Caffe2
python
GPU
DeepStream
MPI
DistributedSystem
arm
Caffe
Android
AutoDrive
DeepLearning
ObjectDetection
TVM
FaceRecognition
Detectron
VisualTracking
PyTorch
Facebook
MOT
NAS TA关注的专栏 0
TA关注的收藏夹 0
TA关注的社区 0
TA参与的活动 2

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频
