田野爱上狗
码龄6年
求更新 关注
提问 私信
  • 博客:64,889
    64,889
    总访问量
  • 53
    原创
  • 7
    粉丝
  • 44
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:贵州省
加入CSDN时间: 2019-06-23
博客简介:

ydeway的博客

查看详细资料
个人成就
  • 获得17次点赞
  • 内容获得14次评论
  • 获得82次收藏
  • 博客总排名2,057,011名
创作历程
  • 6篇
    2020年
  • 50篇
    2019年
成就勋章
TA的专栏
  • ECMAScript 6
    9篇
  • 编译原理
    1篇
  • Zookeeper
    2篇
  • Kafka
    2篇
  • Node.js
    3篇
  • Java SE
  • Java EE
  • 开发工具类
    2篇
  • 数据结构
    24篇
  • Linux(CentOS 7.x)
    1篇
  • Other
    4篇
  • 前端
    3篇
  • Docker
    4篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 大数据
    mysqlredis
  • 后端
    spring架构
  • 搜索
    elasticsearch
  • 服务器
    linux
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

30人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

十字链表的实现

/**2018.9.12 17:09*十字链表的实现*注意rhead和chead都是顺序存储的*其中的down和right并不指向某个结点*/#include<stdio.h>#include<stdlib.h>#define COLUMN 5typedef struct Node{ int r, c; int e; struct Node *d...
原创
博文更新于 2019.09.20 ·
805 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

一些好用的网址

在线P图网站:https://www.uupoop.comNode.js的NPM库:https://www.npmjs.comPDF工具:https://smallpdf.comJSON相关(不止JSON):http://www.bejson.com小书匠markdown:http://soft.xiaoshujiang.com菜鸟教程:https://www.runoob.c...
原创
博文更新于 2020.06.24 ·
5405 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

知树的层次遍历序列及每个结点的度,将其实现为孩子兄弟表示法

/*** 知树的层次遍历序列及每个结点的度,将其实现为孩子兄弟表示法* 当前结点度为孩子的个数,除了第一个孩子作为当前结点的左孩子,当前结点第n(n > 0)个孩子的右孩子为当前结点第n + 1(n + 1 < degree)个孩子* 除根结点外,所有结点的右孩子在其父结点时已经处理完毕,当前结点只需要处理左孩子和孩子的右结点*/void cp(Node*[] node, int[] degree, int n) { //TODO: 先将每个结点的左右孩子指向为NULL int
原创
博文更新于 2020.06.05 ·
1159 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

async/await函数

基本概念  将async和await看作命令  async/await就是generator函数的语法糖,但对generator函数有部分改进:generator函数执行时返回的是一个Iterator对象,而async/await立即返回一个Promise对象,相当于能够将函数内部的多个异步操作封装成为一个Promise对象。async/await内部自带执行器,也就是调用后会自动执行,...
原创
博文更新于 2020.06.03 ·
1928 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

满二叉树知前序求后序

/*** 满二叉树的根结点把二叉树划分为两个结点数量相同的子树,以此类推*/Elem stack[MAX];int top = -1;void preToPost(Elem e[], int s, int t) { if(s > t) return; stack[++top] = e[s]; preToPost(e, (s + t)/2 + 1, t); preToPo...
原创
博文更新于 2020.04.30 ·
371 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

层次遍历获取二叉树的宽度

/*** 2020-04-30* 当第n层的最后一个结点被访问时,第n+1层的最后一个结点已经入队*/int getWidthOfBinTree(BTNode T) { if(!T) return; BTNode Q[MAX], last == T; int r, f, max, max_tmp; r = f = max= max_tmp = 0; Q[++r] = T; w...
原创
博文更新于 2020.04.30 ·
1900 阅读 ·
0 点赞 ·
1 评论 ·
10 收藏

二叉树的后序非递归及使用后序获取两个接点的第一个共同祖先

//2020-04-30//注意c的结构体赋值并非是传递结构体的引用(指针)//js和Java写多了容易漏掉这个东西#include<stdio.h>#include<stdlib.h>#define MAX 100#define LEFT 0#define RIGHT 1typedef int Elem;typedef struct BTNode {...
原创
博文更新于 2020.04.30 ·
278 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

ES6记录

1.暂时性死区(TDZ)会使typeof失效,这种情况下typeof会报错2.块级作用域中的函数声明类似于var,存在提升(见《ES6标准入门 3rd》p25)3.NaN === NaN 与NaN == NaN,结果是false4.typeof NaN,返回'number' ,可以使用Number.isNaN()来判断NaN5.NaN、null、undefined、''(空字符串...
原创
博文更新于 2020.04.02 ·
167 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

js函数同步问题

let i = 1;//模拟数据库操作,因此时间不确定//使用setInterval时,两次f1执行时内部的异步回调无保证执行顺序function f1() { setTimeout(() => { process.stdout.write(i + ' '); setTimeout(() => { i++; }, Number.parseInt(Math.r...
原创
博文更新于 2020.04.01 ·
1502 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二叉树的非递归形式的前、中、后遍历以及层次遍历

/***2018.09.14 17:37*二叉树的遍历 not recursion*先根,中根,后根,层次*/#include<stdio.h>#define MAX 100typedef struct BTNode { int e; struct BTNode *rchild, *lchild;}BTNode;void preOrder(BTNode *p...
原创
博文更新于 2020.03.13 ·
146 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

js比较两个数组中的元素是否相等

arr1.sort().toString() === arr2.sort().toString();
原创
博文更新于 2019.12.09 ·
3727 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

JS中的switch用法

记录一下这种用法,可在case语句后做简单的判断操作 switch(true) { case item.TOEICSCORE < 250: countless250++; break; case item.TOEICSCORE >= 250 && item.TOEICSCO...
原创
博文更新于 2019.11.25 ·
1274 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

docker rpm 安装

软件下载地址:https://download.docker.com使用rpm安装时,需要的以来都在当前rpm目录下,不要瞎找
原创
博文更新于 2019.10.30 ·
322 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CommonJS及其module.exports和exports

//fileName is fuckhimexports.a = xx;exports.b = yy;//fileName is fuckyoumodule.exports = yy;const fuckhim= require('fuckhim');const fuckyou= require('fuckyou');每个模块文件为一个module对象,大概可以认为像下面这样...
原创
博文更新于 2019.10.28 ·
510 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

linux笔记

Cent OS区分字母大小写,所有可识别的东西均已文件形式表示命令行修改基本是临时生效,要永久修改需要修改配置文件不以后缀名识别文件类型,文件类型是为了便于程序员识别所有存储设备需要挂载才能使用带空格的文件和目录在操作时用引号包含起来129.28.78.146基础知识1.配置域名服务器(不一定能成功,可能需要自己配置ip)(1)修改/etc/resolv.conf,在里面添加:n...
原创
博文更新于 2019.10.20 ·
170 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CentOS7.5源码包安装git编译时报错

报错详细信息:/usr/bin/perl Makefile.PL PREFIX='/usr/software/git' INSTALL_BASE='' --localedir='/usr/software/git/share/locale'Can't locate ExtUtils/MakeMaker.pm in @INC (@INC contains: /usr/local/lib64/pe...
原创
博文更新于 2019.10.20 ·
269 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二叉树中求根节点到每个叶子结点的路径

/***2018.10.25 21:32*二叉树中求根节点到每个叶子结点的路径*/#include<stdio.h>#define MAX 100typedef char Elem;typedef struct BTNode{ Elem e; struct BTNode* lchild; struct BTNode* rchild;}BTNode;vo...
原创
博文更新于 2019.10.18 ·
5478 阅读 ·
2 点赞 ·
3 评论 ·
28 收藏

git入门

文章目录git的基本概念初始化仓库设置签名形式辨析签名级别跟踪文件查看历史版本前进或后退版本恢复被完全 删除的文件查看本地库与工作区的差异其他命令tips分支查看分支创建分支切换分支合并分支冲突解决远程仓库推送到远程仓库步骤提交本地代码从已存在的仓库中clone项目到本地从远端拉取变更tips跨团队协作`fork`操作SSH免密登录步骤本地操作远程仓库操作git文件管理机制分支领先 [^1]参考:...
原创
博文更新于 2019.10.14 ·
548 阅读 ·
0 点赞 ·
3 评论 ·
0 收藏

express-session

前言chrome控制台的cookie管理中,会比过期的实际时间少8个小时,但左上角中的cookie过期时间显示正常,而且cookie的过期时间也正常。出现场景: 设置cookie的maxAge值,expire设置是否会出现这种情况,未知,但我觉得不会...
原创
博文更新于 2019.10.11 ·
289 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

文法

文章目录文法基本概念文法的形式定义文法基本概念符号:字母、数字、标点…字母表∑:一个有穷符号集合*(比如ASCII码就是一个字母表)*字母表的乘积∑1∑2 = { ab | a∈∑1,b∈∑2}字母表的n次幂∑0 = ∅Σn = Σn-1 * Σ,n > 1字母表Σ的正闭包Σ+ = Σ ∪ Σ2 ∪ Σ3…可以看做是len = 1、2、...n,的字...
原创
博文更新于 2019.10.08 ·
326 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多