
个人成就
-
优质创作者: Java技术领域
-
领域专家: 后端开发技术领域
-
获得26,565次点赞
-
内容获得1,656次评论
-
获得26,873次收藏
-
代码片获得25,780次分享
-
TA的专栏
-
【小工匠聊架構】 付费135篇 -
【实战-并发编程】 付费10篇 -
【大模型应用开发实战】 61篇 -
【LLM大模型】 98篇 -
【Vibe Coding】 39篇 -
【大规模数据处理】 19篇 -
【n8n】 2篇 -
【Dify智能应用开发实战】 5篇 -
【架构思维】 87篇 -
【安全攻防】 69篇 -
【凤凰架构】 7篇 -
【AIGC】 32篇 -
【Simple RPC】 9篇 -
【Netty原理与 RPC 实践】 2篇 -
【Netty入门到精通】 48篇 -
【性能优化】 21篇 -
【Java开发避坑指南】 16篇 -
【EDA事件驱动架构】 2篇 -
【大厂案例】 7篇 -
【大数据&云计算】 6篇 -
【Nacos架构与原理】 10篇 -
【开源项目鉴赏】 39篇 -
【DDD-领域驱动设计】 22篇 -
【分布式架构】 48篇 -
【每日一博】 87篇 -
【计算机网络】 30篇 -
【设计模式GOF】 63篇 -
【异步编程】 15篇 -
【响应式编程】 9篇 -
【JVM性能调优实战】 61篇 -
【实战-Spring Cloud Alibaba】 1篇 -
【Spring Cloud Alibaba】 29篇 -
【Spring Cloud Finchley】 20篇 -
【实战-Spring Cloud Finchley实战】 7篇 -
【Spring5.x 源码】 26篇 -
【Spring WebFlux】 3篇 -
【开发规范】 19篇 -
【一起学Golang】 2篇 -
【OS System】 3篇 -
【APM】 7篇 -
【MyBatis源码解析】 6篇 -
【LeetCode】 2篇 -
【Tomcat架构&源码&调优】 11篇 -
【Data Structures & Algorithms】 16篇 -
【MQ-Apache RocketMQ】 11篇 -
【MQ-Apache Kafka】 65篇 -
【MQ-RabbitMQ】 2篇 -
【ZK-Apache ZooKeeper】 27篇 -
【ES-Elasticsearch】 93篇 -
【Spring Boot】 119篇 -
【Spring Session】 3篇 -
【实战-SSM In Action】 48篇 -
【MyBatis】 31篇 -
【Redis-入门到精通】 34篇 -
【Redis-进阶实战】 44篇 -
【Java并发编程】 75篇 -
【JVM高级特性】 39篇 -
【Java - Java 8】 35篇 -
【J.U.C源码】 30篇 -
【Java - Java Base】 75篇 -
【Java工具类】 3篇 -
【Java设计模式】 20篇 -
【Spring-IOC】 41篇 -
【Spring-AOP】 25篇 -
【Spring-AOP进阶】 23篇 -
【Spring-JDBC】 20篇 -
【Spring-Cache】 9篇 -
【Spring-MVC】 19篇 -
【Spring-OXM】 5篇 -
【Quartz任务调度】 20篇 -
【MySQL深度剖析】 34篇 -
【MySQL基础篇】 32篇 -
【Oracle基础】 63篇 -
【Oracle通用优化】 24篇 -
【Git】 11篇 -
【Maven】 20篇 -
【系统运维-Shell】 40篇 -
【Dubbo】 1篇 -
【容器技术-Docker】 18篇 -
【系统运维-Linux】 74篇 -
【Nginx】 46篇 -
【软考-恰狗狮】 10篇 -
【Hadoop】 5篇 -
【Python】 18篇 -
【前端开发-Vue2.x基础篇】 5篇 -
【前端开发-JavaScript基础篇】 4篇 -
【移动开发-Android基础篇】 29篇 -
【移动开发-Android网络编程】 3篇 -
【移动开发-AndroidMD】 12篇 -
【移动开发-Android常见UI】 3篇 -
【移动开发-Android-图片处理】 8篇 -
【移动开发-Android杂货箱】 17篇 -
【移动开发-Android中级篇】 11篇 -
【移动开发-AndroidStudio】 17篇 -
【万花筒】 12篇
TA关注的专栏 29
TA关注的收藏夹 0
TA关注的社区 3
TA参与的活动 35
【一起交流】
- 微信公众号 发现更多精彩
- 小工匠的IT生活

创作活动更多

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨
36人参与 去参加
- 最近
- 文章
- 专栏
- 代码仓
- 资源
- 收藏
- 关注/订阅/互动
更多


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频

搜索 取消

许多团队在做 AI 应用时都有类似体验:模型参数越来越大、能力越来越强,但真正落地时,却频频遭遇“跑不动、接不进业务、用户不用”的尴尬局面。背后原因往往不是“模型不够强”,而是缺少从硬件到应用的全栈视角,忽略了基础设施、数据、编排和产品形态之间的系统性关系。本文面向开发者、架构师和技术决策者,从一个真实的场景出发,系统拆解 AI 技术栈的五个关键层次,并给出选型思路、实践建议与成本权衡。如果只盯着某一个“最强模型”,AI 系统很容易陷入“看起来很厉害,但实际用不起来”的陷阱。



















































