小小工匠
码龄14年
求更新 关注
提问 私信
  • 博客:44,550,324
    社区:579
    动态:7,363
    视频:46
    44,558,312
    总访问量
  • 2,540
    原创
  • 44
    排名
  • 141,280
    粉丝
  • 9
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
加入CSDN时间: 2011-10-15

个人简介:show me the code ,change the world

博客简介:

小工匠

博客描述:
show me the code ,change the world
查看详细资料
个人成就
  • 优质创作者: Java技术领域
  • 领域专家: 后端开发技术领域
  • 获得26,565次点赞
  • 内容获得1,656次评论
  • 获得26,873次收藏
  • 代码片获得25,780次分享
  • 原力等级
    原力等级
    9
    原力分
    17,156
    本月获得
    269
创作历程
  • 519篇
    2025年
  • 280篇
    2024年
  • 303篇
    2023年
  • 150篇
    2022年
  • 286篇
    2021年
  • 230篇
    2020年
  • 166篇
    2019年
  • 159篇
    2018年
  • 202篇
    2017年
  • 219篇
    2016年
  • 31篇
    2015年
成就勋章
TA的专栏
  • 【小工匠聊架構】
    付费
    135篇
  • 【实战-并发编程】
    付费
    10篇
  • 【大模型应用开发实战】
    61篇
  • 【LLM大模型】
    98篇
  • 【Vibe Coding】
    39篇
  • 【大规模数据处理】
    19篇
  • 【n8n】
    2篇
  • 【Dify智能应用开发实战】
    5篇
  • 【架构思维】
    87篇
  • 【安全攻防】
    69篇
  • 【凤凰架构】
    7篇
  • 【AIGC】
    32篇
  • 【Simple RPC】
    9篇
  • 【Netty原理与 RPC 实践】
    2篇
  • 【Netty入门到精通】
    48篇
  • 【性能优化】
    21篇
  • 【Java开发避坑指南】
    16篇
  • 【EDA事件驱动架构】
    2篇
  • 【大厂案例】
    7篇
  • 【大数据&云计算】
    6篇
  • 【Nacos架构与原理】
    10篇
  • 【开源项目鉴赏】
    39篇
  • 【DDD-领域驱动设计】
    22篇
  • 【分布式架构】
    48篇
  • 【每日一博】
    87篇
  • 【计算机网络】
    30篇
  • 【设计模式GOF】
    63篇
  • 【异步编程】
    15篇
  • 【响应式编程】
    9篇
  • 【JVM性能调优实战】
    61篇
  • 【实战-Spring Cloud Alibaba】
    1篇
  • 【Spring Cloud Alibaba】
    29篇
  • 【Spring Cloud Finchley】
    20篇
  • 【实战-Spring Cloud Finchley实战】
    7篇
  • 【Spring5.x 源码】
    26篇
  • 【Spring WebFlux】
    3篇
  • 【开发规范】
    19篇
  • 【一起学Golang】
    2篇
  • 【OS System】
    3篇
  • 【APM】
    7篇
  • 【MyBatis源码解析】
    6篇
  • 【LeetCode】
    2篇
  • 【Tomcat架构&源码&调优】
    11篇
  • 【Data Structures & Algorithms】
    16篇
  • 【MQ-Apache RocketMQ】
    11篇
  • 【MQ-Apache Kafka】
    65篇
  • 【MQ-RabbitMQ】
    2篇
  • 【ZK-Apache ZooKeeper】
    27篇
  • 【ES-Elasticsearch】
    93篇
  • 【Spring Boot】
    119篇
  • 【Spring Session】
    3篇
  • 【实战-SSM In Action】
    48篇
  • 【MyBatis】
    31篇
  • 【Redis-入门到精通】
    34篇
  • 【Redis-进阶实战】
    44篇
  • 【Java并发编程】
    75篇
  • 【JVM高级特性】
    39篇
  • 【Java - Java 8】
    35篇
  • 【J.U.C源码】
    30篇
  • 【Java - Java Base】
    75篇
  • 【Java工具类】
    3篇
  • 【Java设计模式】
    20篇
  • 【Spring-IOC】
    41篇
  • 【Spring-AOP】
    25篇
  • 【Spring-AOP进阶】
    23篇
  • 【Spring-JDBC】
    20篇
  • 【Spring-Cache】
    9篇
  • 【Spring-MVC】
    19篇
  • 【Spring-OXM】
    5篇
  • 【Quartz任务调度】
    20篇
  • 【MySQL深度剖析】
    34篇
  • 【MySQL基础篇】
    32篇
  • 【Oracle基础】
    63篇
  • 【Oracle通用优化】
    24篇
  • 【Git】
    11篇
  • 【Maven】
    20篇
  • 【系统运维-Shell】
    40篇
  • 【Dubbo】
    1篇
  • 【容器技术-Docker】
    18篇
  • 【系统运维-Linux】
    74篇
  • 【Nginx】
    46篇
  • 【软考-恰狗狮】
    10篇
  • 【Hadoop】
    5篇
  • 【Python】
    18篇
  • 【前端开发-Vue2.x基础篇】
    5篇
  • 【前端开发-JavaScript基础篇】
    4篇
  • 【移动开发-Android基础篇】
    29篇
  • 【移动开发-Android网络编程】
    3篇
  • 【移动开发-AndroidMD】
    12篇
  • 【移动开发-Android常见UI】
    3篇
  • 【移动开发-Android-图片处理】
    8篇
  • 【移动开发-Android杂货箱】
    17篇
  • 【移动开发-Android中级篇】
    11篇
  • 【移动开发-AndroidStudio】
    17篇
  • 【万花筒】
    12篇

TA关注的专栏 29

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 35

兴趣领域 设置
  • 后端
    架构
  • 云原生
    云原生
  • 人工智能
    人工智能
【一起交流】
  • 微信公众号 发现更多精彩
  • 小工匠的IT生活
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

36人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

LLM - 从 GPU 到智能应用:构建 AI 系统的五层技术栈不完全指北

许多团队在做 AI 应用时都有类似体验:模型参数越来越大、能力越来越强,但真正落地时,却频频遭遇“跑不动、接不进业务、用户不用”的尴尬局面。背后原因往往不是“模型不够强”,而是缺少从硬件到应用的全栈视角,忽略了基础设施、数据、编排和产品形态之间的系统性关系。本文面向开发者、架构师和技术决策者,从一个真实的场景出发,系统拆解 AI 技术栈的五个关键层次,并给出选型思路、实践建议与成本权衡。如果只盯着某一个“最强模型”,AI 系统很容易陷入“看起来很厉害,但实际用不起来”的陷阱。
原创
博文更新于 5 分钟前 ·
237 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

LLM - 从 Claude Code Agent Skills 看通用代理的现实路径:设计理念、工程实现与未来形态

Claude Skills 是一种创新的模型扩展机制,通过 Markdown+YAML+脚本的组合,让大模型具备稳定执行专业任务的能力。其核心价值在于: 模块化技能封装:将专业任务知识打包成可复用的"技能包",包含结构化元数据(YAML)、详细说明(Markdown)和可执行脚本。 高效知识管理:采用"元数据索引+按需加载"机制,大幅降低token消耗,支持海量技能共存。 自然执行流程:模型通过阅读说明自主调用脚本,在代码解释器环境中实现完整任务闭环。 相比传统插件系
原创
博文更新于 昨天 05:45 ·
1066 阅读 ·
20 点赞 ·
0 评论 ·
23 收藏

LLM - Prompt Engineering 构建工业级 LLM Agent 的六维结构化框架

本文深入探讨了面向开发者的结构化Prompt设计方法,提出Agent设计的六维框架:角色、上下文、流程、边界、约束和示例。通过角色设定激活模型专业子空间,分层管理上下文状态,显式定义任务流程步骤,明确划定职责边界,严格规范输出格式,并利用少样本学习提升性能。文章以代码审查Agent为例,展示了如何将这六大维度整合为可落地的工程化Prompt方案,帮助开发者构建稳定可控的AI交互系统。
原创
博文更新于 昨天 04:30 ·
1070 阅读 ·
31 点赞 ·
0 评论 ·
30 收藏

LLM - 面向开发者的 Prompt 设计:从“一次成稿”到“对抗式收敛”

摘要: 本文系统介绍了Prompt工程化设计方法,帮助开发者从“随手提问”升级为“对抗式收敛”的迭代工作流。核心观点包括: 结构化Prompt:将自然语言指令转化为包含背景、任务目标、输入约束、输出格式和示例的五要素“规格说明书”,提升模型输出的稳定性; 迭代优化:通过诊断问题、针对性修正和自我反馈(Self-Refine)循环,逐步逼近理想结果; 设计原则:强调清晰具体、任务分解、结构化输出和示例示范,避免模糊指令; 团队协作:建议将Prompt模板化、版本化管理,建立可复用的团队资产库,并通过A/B测试
原创
博文更新于 前天 05:45 ·
837 阅读 ·
25 点赞 ·
0 评论 ·
19 收藏

LLM - 基于技术方案的 AI 开发新范式

AI编程新范式:技术方案驱动的全链路代码生成 本文探讨了AI编程从"对话式写代码"向"技术方案驱动"的范式转变。针对Java+Spring Boot团队,提出五步闭环流程:1)结构化技术方案作为AI"施工图";2)建立规范化规则索引;3)集成内部工具与知识;4)人机协同代码生成与校验;5)AI自我总结形成闭环。实践表明,这种结构化方法可使AI代码采纳率显著提升,同时让开发者从重复编码转向更高价值的设计工作。落地时建议从小型试点开始,逐步构建团队专属
原创
博文更新于 前天 04:45 ·
943 阅读 ·
25 点赞 ·
0 评论 ·
8 收藏

LLM - AI Agent的上下文工程(Context Engineering)不完全指北

本文探讨了AI Agent从Demo到生产环境面临的核心挑战——上下文工程(Context Engineering)。文章指出,当前AI系统的主要瓶颈不在于模型能力,而在于如何高效管理上下文窗口中的信息流动。作者分析了上下文窗口的本质限制,揭示了四种典型失败模式(污染、分散、混淆、冲突),并提出了构建生产级AI Agent的六大支柱框架:Agent编排中枢、查询增强、智能检索、提示技术、记忆系统和工具集成。文章强调,上下文工程是确保AI系统在真实场景中保持稳定性和可靠性的关键,需要从战略层面设计信息的选择、
原创
博文更新于 2025.12.17 ·
1004 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

LLM - 从定制化 Agent 到通用 Agent + Skills

摘要 大模型应用团队普遍面临Agent维护成本高、复用率低的问题。Anthropic提出的Agent Skills方案采用全新路径:构建通用Agent,通过可组合Skills沉淀专业知识。Skills采用结构化文件系统存储,包含元数据、指令文档、脚本和示例,实现知识模块化管理。相比传统长prompt方式,Skills方案具有渐进式加载、代码执行不占上下文、可组合性等优势。该方案将领域知识与智能解耦,通过三层加载机制平衡无限技能与有限上下文,使Agent更专注于决策而非流程描述。最终实现从领域专用Agent向
原创
博文更新于 2025.12.17 ·
1435 阅读 ·
26 点赞 ·
0 评论 ·
32 收藏

LLM - Spring AI × Anthropic Skills

本文介绍了如何将外部技能(Skill)集成到基于Spring AI的智能体(Agent)中。通过Java封装Python脚本作为可调用函数,并利用Spring AI的Function/Tool Calling功能,使大语言模型能够自主决定何时调用特定技能。 主要内容包括: 定义技能请求/响应DTO模型 通过ProcessBuilder调用Python技能脚本 将技能工具注册为Spring Bean 配置ChatClient让Agent自动选择技能 文章以内部数据分析和代码评审两个技能为例,展示了端到端的集成
原创
博文更新于 2025.12.16 ·
1043 阅读 ·
22 点赞 ·
0 评论 ·
22 收藏

LLM - Agent Skills 案例:内部数据分析

本文介绍了一个面向企业内部数据分析场景的智能体(Skill)设计示例。该Skill包含完整的工作流程:从需求澄清、数据查询到分析报告生成。核心内容包括: 标准化目录结构,包含技能说明文档(SKILL.md)、执行脚本和资源文件 详细的工作流程设计,分6个步骤完成数据分析任务 两个关键脚本:run_query.py用于执行SQL查询,clean_and_aggregate.py用于数据清洗和聚合 输出结构化分析报告模板,包含摘要、关键指标、洞察建议等部分 该Skill强调数据合规性、指标口径统一性和分析结论的
原创
博文更新于 2025.12.16 ·
1556 阅读 ·
33 点赞 ·
0 评论 ·
30 收藏

LLM - Agent Skills 案例:PR 代码评审 Skill

本文介绍了一个面向开发者的PR代码评审智能体Skill完整示例,包含以下核心内容: 目录结构:展示了一个标准Skill的组成,包括核心说明文件、脚本和资源目录。 SKILL.md模板:提供了可直接套用的YAML+Markdown模板,包含: 元数据定义(名称、描述、输入输出等) 详细评审流程(5个关键步骤) 静态检查脚本使用说明 资源文件交互方式 输出格式规范 示例脚本:给出了一个Python静态检查脚本框架,可检测函数长度和嵌套深度等基础问题。 该示例完整展示了一个代码评审智能体Skill的开发范式,开发
原创
博文更新于 2025.12.15 ·
785 阅读 ·
26 点赞 ·
0 评论 ·
21 收藏

LLM - Agent Skills 智能体新范式

摘要: Agent Skills 是 Anthropic 提出的新型 AI 技能系统,通过结构化文件夹(含说明文档、脚本和资源)封装可复用的任务流程,解决了当前 Agent 开发中知识难以沉淀、上下文爆炸和生态割裂的问题。其核心机制"渐进式披露"分层加载技能内容,平衡了上下文开销与执行精度。相比传统工具调用和 RAG,Skills 更强调"如何做"的完整工作流,可转化为组织级可执行资产。开发者可通过拆解高频任务、结构化步骤和脚本化关键操作来构建有效 Skill,推动
原创
博文更新于 2025.12.15 ·
1833 阅读 ·
30 点赞 ·
2 评论 ·
38 收藏

LLM - 六大 Agent 设计模式:从 ReAct 到 Agentic RAG 的完整工程实践指南

摘要:本文系统梳理了多模态AI Agent的6大设计模式,包括ReAct(推理与工具调用闭环)、Self-Reflection(自我评估提升质量)、MCP Tool Use(轻量级工具集成)、CodeAct(可执行代码替代JSON)、Multi-Agent Workflow(多智能体协作)和Agentic RAG(智能化检索策略)。这些模式可组合应用,将单一对话模型升级为具备自主思考、工具调用、协作与检索能力的智能系统。文章从工程落地角度分析了各模式的原理、适用场景及实践建议,强调通过模块化设计和安全控制实
原创
博文更新于 2025.12.14 ·
1765 阅读 ·
56 点赞 ·
0 评论 ·
38 收藏

LightRAG - 从传统 RAG 到 LightRAG:双层检索与知识图谱在企业问答中的实践

摘要: LightRAG针对企业问答场景,提出“向量检索+知识图谱”的双层检索架构,弥补传统RAG在跨文档推理和全局一致性上的不足。其核心是通过实体关系图增强检索能力,支持局部(chunk向量)、全局(图结构)及混合检索模式,兼顾效率与逻辑连贯性。系统采用模块化存储设计,支持增量更新,适应企业数据动态变化。相比传统RAG仅依赖文本片段检索,LightRAG通过显式建模实体关联,显著提升复杂查询(如跨系统业务分析)的准确性,同时保持工程轻量化,成为企业知识管理的高效解决方案。
原创
博文更新于 2025.12.14 ·
906 阅读 ·
22 点赞 ·
0 评论 ·
15 收藏

LLM - 从 LLM 到 RAG、Agent、MCP 的一体化工程实践

企业大模型应用正从对话转向任务闭环,需要整合LLM、RAG、Agent和MCP等技术构建可落地的AI基础设施。LLM作为基础能力组件,企业应采用"云端+本地"混合部署策略;RAG通过检索增强让模型理解业务知识;Agent赋予系统规划执行能力;MCP协议实现工具和数据标准化接入。典型架构分为数据层、AI能力层、Agent层和应用层,需兼顾安全治理与业务需求。以知识助手为例,展示了从检索到任务执行的端到端流程。未来趋势将聚焦AI与核心业务的深度融合,以及开发流程的标准化。
原创
博文更新于 2025.12.14 ·
2104 阅读 ·
50 点赞 ·
0 评论 ·
32 收藏

LLM - 智能体驱动的 Agentic RAG

企业级Agentic RAG系统正从简单的问答转向复杂的业务决策执行。相比传统RAG,它通过引入多智能体协作机制,实现了任务分解、工具调用和流程编排能力。系统架构包含交互层、智能体运行时层和数据检索层,采用Planner、Retrieval、Tool等Agent角色分工协作。Java/Spring技术栈可通过统一接口、策略模式实现灵活路由,并注重安全审计、权限控制和可观测性。这种架构将文档检索与动态系统查询统一为"工具",支持复杂企业场景下的可靠决策执行。
原创
博文更新于 2025.12.14 ·
991 阅读 ·
21 点赞 ·
0 评论 ·
21 收藏

LLM - 从 Prompt 到上下文工程:面向 Java 的生产级 AI Agent 设计范式

本文探讨了如何构建安全、可控的生产级AI Agent系统。文章指出,当前大模型已具备接近工程师的编程能力,但落地难点在于系统安全性、权限控制和可持续运行。重点分析了Prompt注入威胁及多层防御策略,强调工具设计、调用策略和上下文工程的关键作用。针对长任务场景,提出了压缩、外部记忆和子Agent三板斧解决方案。最后为Java开发者提供了架构建议,包括上下文管理、安全控制和任务调度三层设计。附Anthropic/Claude相关工程文档索引,涵盖Agent SDK、上下文工程及长任务可靠性设计等实用资源
原创
博文更新于 2025.12.13 ·
1071 阅读 ·
26 点赞 ·
0 评论 ·
25 收藏

LLM - MCP Powered Agent_从工具失配到架构重构的实战指南

本文探讨了AI Agent在多工具环境下的优化策略。针对工具数量增加导致的选择困难和性能下降问题,提出了分层架构设计:将工具发现与调用解耦为两阶段流程,引入中间层进行工具检索和路由;建议采用程序化脚本编排工具调用,使用GraphQL等统一接口收敛零散工具;提出建立分层Agent体系,由顶层协调Agent、领域专属Agent和底层工具平面组成。文章还给出了MCP工具设计的具体建议,包括合理控制工具粒度、规范命名描述、结构化返回数据等。最终强调,提升Agent效能的关键不在于工具数量,而在于优化工具的组织架构和
原创
博文更新于 2025.12.13 ·
874 阅读 ·
14 点赞 ·
0 评论 ·
19 收藏

Elasticsearch - UNASSIGNED SHARDS 解决方案不完全指北

Elasticsearch的allocate_stale_primary命令用于在主分片不可用且无最新副本时,强制将过期副本提升为主分片以恢复服务。该操作通过_cluster/reroute接口执行,需显式设置accept_data_loss:true确认可能的数据丢失风险。执行流程包括:确认分片状态、查找可用副本节点、执行强制分配命令。该操作可能导致数据回退,且后续若更完整数据节点重新加入,可能被覆盖造成不可逆损失。建议仅在无法恢复最新数据且接受数据丢失时使用。
原创
博文更新于 2025.12.13 ·
964 阅读 ·
24 点赞 ·
0 评论 ·
9 收藏

Elasticsearch - Reroute 深度剖析:分片调度与集群恢复不完全指北

Elasticsearch Reroute机制解析与实践指南 本文深入探讨Elasticsearch集群管理中的关键手动干预机制——reroute。主要内容包括: 机制原理:分析reroute在ES分片调度系统中的作用,解释其如何绕过自动调度的保守策略实现快速恢复。 应用场景: 主分片丢失时的灾难恢复 集群负载均衡与扩容 节点下线与维护迁移 API详解:提供move、allocate_primary、allocate_stale_primary等核心操作的可执行示例。 决策系统:剖析Allocation D
原创
博文更新于 2025.12.12 ·
1213 阅读 ·
39 点赞 ·
0 评论 ·
52 收藏

ElasticSearch - 分片灾难恢复实战:不重启ES集群极限磁盘级数据抢救

本文介绍了在ElasticSearch集群出现主副本分片同时unassigned时的数据恢复方案。当系统文件句柄耗尽导致分片不可分配时,虽然磁盘数据仍存在,但ES会因安全验证失败而拒绝自动恢复。文章详细解析了两种底层恢复机制:allocate_stale_primary(从磁盘恢复可能回滚数据)和allocate_empty_primary(重建空分片),并给出了工程化的恢复流程,包括系统修复、分片检查、逐分片恢复策略表等关键步骤。最后强调恢复后的数据校验和集群加固措施,指出掌握磁盘级恢复技术对保障搜索系统
原创
博文更新于 2025.12.12 ·
1025 阅读 ·
27 点赞 ·
0 评论 ·
15 收藏
加载更多