宅男很神经
码龄4年
求更新 关注
提问 私信
  • 博客:1,134,642
    社区:1
    动态:17,659
    1,152,302
    总访问量
  • 1,254
    原创
  • 7,930
    粉丝
  • 147
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
加入CSDN时间: 2021-11-25

个人简介:宅男很神经的我

博客简介:

宅男很神经

博客描述:
宅男很神经
查看详细资料
个人成就
  • 获得18,907次点赞
  • 内容获得24次评论
  • 获得17,160次收藏
  • 代码片获得590次分享
  • 博客总排名14,670名
  • 原力等级
    原力等级
    5
    原力分
    1,843
    本月获得
    19
创作历程
  • 581篇
    2025年
  • 673篇
    2024年
成就勋章
TA的专栏
  • 开课了
    付费
  • 嵌入式开发
    付费
  • 开课了-----贰
    付费
  • 嵌入式开发----Linux
    付费
  • 从零开始系列

TA关注的专栏 170

TA关注的收藏夹 0

TA关注的社区 5

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 问答
  • 帖子
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 问答

  • 帖子

  • 社区

  • 视频

  • 课程

  • 关注/订阅/互动

  • 收藏

搜索 取消

【强化学习】01

强化学习(Reinforcement Learning, RL)是一种机器学习范式,它关注智能体(Agent)如何在特定环境(Environment)中通过与环境的交互来学习如何做出决策,以最大化某种累积奖励。与监督学习和无监督学习不同,强化学习不依赖于预先标注好的数据集,而是通过“试错”的方式进行学习。在传统的机器学习领域,监督学习需要大量的带有正确标签的数据来训练模型,例如图像分类、语音识别等。无监督学习则在没有标签的数据中寻找模式和结构,例如聚类、降维等。强化学习则完全不同,它没有明确的“正确答案”或
原创
博文更新于 2025.07.16 ·
1433 阅读 ·
18 点赞 ·
0 评论 ·
8 收藏

【Python】gensim

在本章中,我们将从最基础、最核心的构成元素开始,深入剖析其内部机制。理解这些底层概念是精通,乃至整个自然语言处理(NLP)领域,不可或缺的第一步。我们将详细探讨语料库(Corpora)、字典(Dictionaries)以及它们在内存中的表示、优化策略,以及如何高效地处理大规模文本数据。在中,语料库不仅仅是文本文件的集合,它是一种高度抽象和优化的数据结构,旨在高效地存储、访问和处理大规模文档集合。的语料库设计遵循“流式处理”的原则,这意味着它通常不会将整个语料库加载到内存中,而是通过迭代器(iterator)
原创
博文更新于 2025.07.10 ·
1349 阅读 ·
17 点赞 ·
0 评论 ·
12 收藏

【Python】深度学习3

注意力机制允许模型在生成输出序列的每一步时,都能够“回顾”输入序列的所有部分,并根据当前的需求,为每个部分分配一个“注意力权重”。例如,在理解 “it” 的指代时,一个注意力“头”可能关注于语法上的主谓关系,而我们可能还希望有其他的“头”能关注语义上的关联,或是其他更微妙的模式。Transformer 的成功在于其对这些组件的巧妙组合,特别是完全依赖注意力机制,摆脱了RNN的顺序计算瓶颈,从而在现代并行硬件上实现了前所未有的训练速度和模型规模。我们之前实现的 Dropout 层可能针对的是特定形状的数据。
原创
博文更新于 2025.07.10 ·
789 阅读 ·
27 点赞 ·
0 评论 ·
10 收藏

【Python】深度学习2

在深度神经网络中,尤其是在训练深层模型时,一个普遍且棘手的问题是“内部协变量漂移”(Internal Covariate Shift, ICS)。协变量漂移通常指的是训练集和测试集数据分布不一致的问题。而在深度网络中,这个概念被推广到网络内部:在训练过程中,由于前一层参数的不断更新,导致其输出(即后一层的输入)的分布在不断地发生变化。想象一下一个多层神经网络,每一层都会对输入进行线性变换和非线性激活。当前一层参数更新后,它的输出分布就会改变。这意味着作为下一层的输入,其分布也随之改变。对于后续层来说,它们需
原创
博文更新于 2025.07.10 ·
1161 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

【Python】深度学习

深度学习的实现高度依赖于强大的编程工具和高效的数值计算库。Python以其简洁的语法、丰富的库生态系统,成为了深度学习领域无可争议的“通用语言”。而NumPy,作为Python科学计算的核心库,为处理多维数组(张量)提供了极其高效的方法,是所有深度学习框架(如TensorFlow、PyTorch)底层运算的基石。在深入深度学习之前,我们需要确保对Python语言的基本构造有扎实的理解。这里我们将聚焦于那些在数据处理和模型构建中频繁使用的概念。Python是动态类型语言,这意味着您无需提前声明变量的类型,Py
原创
博文更新于 2025.07.10 ·
610 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

【Python】asyncio

在本章中,我们将深入探究Python生成器的最底层机制。我们将从迭代器协议的本质出发,逐步揭示关键字的魔力,以及它如何将一个普通函数转化为拥有暂停与恢复能力的生成器。此外,我们还将覆盖生成器表达式的简洁性与效率,并详细剖析生成器高级控制方法,如、和,理解它们在构建复杂控制流中的关键作用。在Python中,迭代是一个核心概念。它允许我们遍历集合中的元素,无论是列表、元组、字符串还是其他更复杂的数据结构。实现这种遍历行为的背后,是Python的迭代协议(Iteration Protocol)。理解这个协议是理解
原创
博文更新于 2025.07.10 ·
616 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

【Python】Pandas2

时间序列数据是数据分析领域中极其重要的一种数据类型,它涉及到按时间顺序排列的观测值。从金融市场的股票价格、气象站的温度记录,到网站的用户访问量、设备的传感器读数,时间序列无处不在。Pandas对时间序列数据提供了无与伦比的支持,其核心是以及一系列高效且灵活的时间操作功能,如重采样、移动窗口、日期偏移和时区处理。本章将从最底层的构造开始,全面深入地解析Pandas处理时间序列数据的精髓。是Pandas专门为时间序列数据设计的索引类型。它是一个包含日期时间戳的特殊对象,能够高效地支持时间相关的操作,如切片、频率
原创
博文更新于 2025.07.10 ·
552 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

【Python】Pandas

Pandas库的核心基石是其数据结构,其中作为一维带标签数组,是理解更复杂的基础。本章将从最底层的结构出发,对其内部机制、创建方式、属性、索引、数据类型、操作行为及内存占用进行极其详尽的剖析。可以被理解为一种增强版的NumPy一维数组。它在NumPy数组的基础上,引入了“索引”(Index)的概念,为每个数据点赋予了一个标签,从而使得数据访问和操作更加直观和强大。内部组成:一个对象实际上由两个主要部分构成:数据对齐原理:Pandas 最核心的设计理念之一是“数据对齐”。当进行两个或多个之间的运算时,Pand
原创
博文更新于 2025.07.10 ·
1173 阅读 ·
19 点赞 ·
0 评论 ·
10 收藏

【Python】 importlib 动态加载

在深入探究Python的模块之前,我们必须首先对Python中最基础也是最核心的模块导入机制——语句——有一个极其深刻的理解。的强大之处,正是建立在对Python现有导入系统内部运作机制的抽象、封装和扩展之上。本章将从零开始,剖析语句从被解析到模块完全可用的整个生命周期,揭示其背后的关键组件,为后续理解打下最坚实的基础。Python的模块化设计是其成功的基石之一。模块化允许开发者将大型程序分解为更小、更易管理、可重用的独立单元。每个文件通常被视为一个模块。这种设计带来了诸多益处:Python的模块导入机制,
原创
博文更新于 2025.07.10 ·
817 阅读 ·
14 点赞 ·
0 评论 ·
18 收藏

【Python】 Neo4j

在深入探讨如何使用Python与Neo4j进行交互之前,我们必须首先从最底层、最根本的角度理解为什么需要图数据库,以及它解决了哪些传统数据模型难以应对的问题。这不仅是技术选择的考量,更是思维模式的转变。关系型数据库(Relational Databases, RDBs)以其严谨的表结构、事务(ACID)特性以及强大的SQL查询语言,在过去的几十年里一直是数据存储和管理的主流。然而,当数据模型中的实体关系变得复杂且层级加深时,关系型数据库固有的设计范式便开始显现其局限性,尤其是在处理“关系”本身时。关系型数据
原创
博文更新于 2025.07.10 ·
1343 阅读 ·
32 点赞 ·
0 评论 ·
17 收藏

【Python】内存泄漏3

预防策略:避免让守护线程管理关键资源:如果一个线程负责打开文件、网络连接或分配大内存块,并期望在任务结束后进行清理,那么它不应该被设置为守护线程。非守护线程会阻止程序退出,直到它们自身完成或被显式停止,从而给予它们执行清理逻辑的机会。显式清理与资源管理:无论线程类型如何,对于需要显式关闭的资源(如文件、数据库连接、自定义内存块),始终使用上下文管理器( 语句)或在 块中确保清理代码被执行。对于无法使用 语句包装的复杂资源,提供一个 或 方法,并在线程逻辑的末尾显式调用它。使用 或其他信号机制:如果
原创
博文更新于 2025.07.10 ·
1187 阅读 ·
18 点赞 ·
0 评论 ·
14 收藏

【Python】 ETL

在ETL(Extract, Transform, Load)流程中,提取(Extraction)是第一步,其核心在于从各种数据源中获取原始数据。本章将聚焦于“文本文件”的提取,因为文本文件是数据交换中最常见且最基础的形式之一。我们将从最底层的操作系统文件I/O原理出发,逐步深入到Python中高效、鲁棒地处理各种文本文件格式的方法,并剖析其内部机制。要精通文本文件提取,首先需要理解文件在操作系统层面的本质以及Python如何与这些底层机制交互。文件并非魔法,它是一段存储在持久化介质(如硬盘、SSD)上的二进
原创
博文更新于 2025.07.10 ·
1143 阅读 ·
18 点赞 ·
0 评论 ·
29 收藏

【Python】Python+Ray

计算的本质是物理过程。我们今天所使用的所有数字计算机,其最底层的运算单元都是基于半导体(通常是硅)制造的晶体管。晶体管通过控制电流的“开”与“关”来表示二进制的“1”和“0”,这是构建一切复杂逻辑运算的基础。数十年来,计算机性能的飞速提升,其核心驱动力源于一个被称为“摩尔定律”的行业观察:集成电路上可容纳的晶体管数量,约每隔18至24个月便会增加一倍。更多的晶体管意味着更强的计算能力、更大的存储容量或更丰富的功能。为了在有限的芯片面积上塞入更多晶体管,工程师必须不断地缩小单个晶体管的尺寸,这个过程被称为“制
原创
博文更新于 2025.07.10 ·
1065 阅读 ·
21 点赞 ·
0 评论 ·
16 收藏

【Python】Hydra

在复杂的软件开发,尤其是在机器学习、数据科学以及大型应用项目中,配置管理是一个长期存在的痛点。传统的配置方式,如硬编码常量、命令行参数解析器()、简单的Python字典或JSON/INI文件,在项目规模扩大、配置项增多、实验迭代频繁时,会迅速暴露出诸多弊端:Hydra框架正是为了解决这些核心痛点而诞生。它不仅仅是一个配置加载器,更是一个强大的、声明式的配置管理系统,旨在提供一种结构化、可组合、可复现且易于实验追踪的解决方案。其核心理念是通过结构化的YAML文件定义配置,并通过命令行进行灵活的覆盖和组合,同时
原创
博文更新于 2025.07.10 ·
1116 阅读 ·
9 点赞 ·
0 评论 ·
19 收藏

【Python】内存泄漏2

好的,我们继续深入Python内存泄漏的预防策略。解析与思考:在上述 示例中, 实例 在 函数内部创建,作为局部变量。一旦 函数执行完毕, 就不再有任何可达的引用,其引用计数会降为零,并立即被引用计数机制回收。即使不手动调用 ,这些对象也会在函数返回后迅速被标记为可回收。通过观察 的变化,我们可以看到内存占用在每次函数调用结束后恢复到接近初始状态,这正是局部变量有效管理内存的体现。与局部变量不同,全局变量的生命周期与程序的生命周期相同。一旦一个对象被全局变量引用,它将一直存在于内存中,直到程序
原创
博文更新于 2025.07.10 ·
473 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

【Python】Python内存泄漏

本章将带您深入Python解释器(特别是CPython)的内存管理核心,从最基础的对象模型和内存布局开始,逐步向上剖析引用计数、垃圾回收两大支柱,并揭示它们在处理内存时的精妙之处与潜在陷阱。理解这些底层机制是识别、诊断并最终避免内存泄漏的基石。Python的内存管理哲学根植于其独特且强大的对象模型。在Python中,"一切皆对象"不仅仅是一句口号,它更是指导内存分配、引用管理和垃圾回收的根本原则。在Python的世界里,无论是数字、字符串、列表、字典,甚至是函数、类、模块,它们在内存中都以统一的“对象”形式
原创
博文更新于 2025.07.10 ·
1078 阅读 ·
10 点赞 ·
0 评论 ·
15 收藏

【Python】OpenCV影像处理2

在掌握了视频的读取、显示、储存以及高效管道构建后,我们接下来将深入探索如何从视频帧中提取更有意义的信息,以及对视频帧进行更复杂的几何变换。这不仅仅是对单个图像的处理,更是对连续动态序列的理解与操作,是通向智能视频分析的关键一步。视频中的每个帧都是一张图像,因此图像的几何变换技术也同样适用于视频帧。但当应用于视频时,这些变换通常需要考虑跨帧的一致性和连续性。图像的几何变换是改变图像中像素空间位置的操作。其中,仿射变换和透视变换是最常用且功能强大的两种。它们通过矩阵乘法来实现像素坐标的映射。6.1.1.1 仿射
原创
博文更新于 2025.07.10 ·
1183 阅读 ·
25 点赞 ·
0 评论 ·
27 收藏

【AI智能体】Dify2

信息茧房/泛化性不足 (Information Silos / Lack of Specificity):缺乏溯源能力 (Lack of Attribution/Traceability):上下文窗口限制 (Context Window Limitations):推理能力不足 (Limited Reasoning Capability):总结而言,RAG技术通过以下核心机制,系统性地克服了LLM的这些固有缺陷:3.3.1.2 RAG的整体架构与信息流RAG系统通常由两大核心阶段组成:检索(Retrieval
原创
博文更新于 2025.07.10 ·
1712 阅读 ·
25 点赞 ·
0 评论 ·
25 收藏

【AI智能体】Dify

第一章:AI智能体基础与Dify核心理念深度解析1.1 人工智能发展脉络与智能体演进人工智能(AI)的旅程是一部波澜壮阔的技术史诗,它从最初的符号逻辑推演,历经连接主义的崛起,直至今日由大型语言模型(LLM)驱动的智能体浪潮。理解这一发展脉络,对于我们深入掌握Dify这类AI应用开发平台的核心价值至关重要。1.1.1 从符号AI到连接主义的范式转换早期的AI研究,即所谓的符号主义AI(Symbolic AI),其核心理念是将人类智能视为对符号的操纵。这个范式认为,智能行为可以通过一系列预先定义的规则、逻辑推
原创
博文更新于 2025.07.10 ·
1445 阅读 ·
17 点赞 ·
0 评论 ·
9 收藏

【强化学习】马尔可夫决策过程

在强化学习的宏伟蓝图中,马尔可夫决策过程(Markov Decision Process, MDP)是其最根本、最核心的数学框架。理解 MDP,就如同掌握了强化学习的通用语言,它是构建智能体与环境交互模型的基础。我们将从其最底层的逻辑出发,向上层层剖析。在深入 MDP 之前,我们必须首先理解“马尔可夫性”。这是一个概率论中的核心概念,对于理解状态的演化至关重要。什么是马尔可夫性?马尔可夫性指的是一个随机过程在给定当前状态时,其未来状态的条件概率分布只依赖于当前状态,而与过去状态无关。简单来说,就是“未来只取
原创
博文更新于 2025.07.10 ·
1015 阅读 ·
16 点赞 ·
0 评论 ·
13 收藏
加载更多