丁学文武
码龄14年
求更新 关注
提问 私信
  • 博客:259,653
    动态:1
    259,654
    总访问量
  • 212
    原创
  • 8,959
    排名
  • 519
    粉丝
  • 142
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
加入CSDN时间: 2011-08-01

个人简介:打球、跑步、徒步、露营️、骑行、滑雪️、游泳、冲浪

查看详细资料
个人成就
  • 获得4,485次点赞
  • 内容获得18次评论
  • 获得3,744次收藏
  • 代码片获得550次分享
  • 原力等级
    原力等级
    5
    原力分
    1,848
    本月获得
    45
创作历程
  • 210篇
    2025年
  • 1篇
    2020年
  • 1篇
    2019年
成就勋章
TA的专栏
  • 强化学习
    9篇
  • 人工智能
    145篇
  • 大模型应用
    169篇
  • 多模态
    3篇
  • Langchain
    22篇
  • LangGraph
    12篇
  • Agent
    40篇
  • GPT-5
    17篇
  • Cursor
    2篇
  • 程序员
    9篇
  • ChatBI
    3篇
  • 提示词
    3篇
  • RAG
    29篇
  • 10个助手
    1篇
  • Composer
    1篇
  • cladue
    2篇
  • MOE
    1篇
  • 阿里
    1篇
  • 微调
    9篇
  • 知识蒸馏
    1篇
  • 大模型评估
    2篇
  • Embeddings
    8篇
  • Transformer
    33篇
  • Attention
    1篇
  • FFN
    1篇
  • 分布式训练
    4篇
  • Qoder
    1篇
  • Qwen3
    4篇
  • 模型部署框架
    8篇
  • Dify
    2篇
  • MCP
    5篇
  • 偏好对齐优化
    1篇
  • A2A
    1篇
  • Gemma
    1篇
  • Qwen
    1篇
  • 智能体
    3篇
  • Agentic RAG
    3篇
  • GraphRAG
    3篇
  • Deepseek
    4篇
  • Multi-Agent
    19篇
  • suna
    1篇
  • AutoGen
    14篇
  • CrewAI
    4篇
  • ComfyUI
    1篇
  • python
    2篇
  • 机器学习
    2篇
  • ASP.NET
  • ASP.NET MVC
  • Javascript
  • jQuery

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 3

TA的推广
兴趣领域 设置
  • 人工智能
    数据挖掘人工智能深度学习自然语言处理语言模型AI作画
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

RLHF vs RLAIF vs RLVR:从“人类偏好”到“可验证奖励”

本文对比了三种强化学习对齐方法:RLHF(基于人类反馈)、RLAIF(基于AI反馈)和RLVR(基于可验证奖励)。RLHF依赖人工标注但质量高,RLAIF通过AI模型降低成本但可能产生偏差,RLVR则利用自动验证程序(如代码测试、数学答案比对)实现客观评估。RLVR在可扩展性和准确性方面优势显著,尤其适合结构化任务。文章还提供了技术实现框架和工程选型建议,指出RLVR是推理类大模型的重要发展方向。
原创
博文更新于 2025.12.08 ·
611 阅读 ·
9 点赞 ·
0 评论 ·
11 收藏

16k数据撬动300亿大模型!我用Qwen3-VL打造了一位“顶尖放射科医生”

本文介绍了一种基于1.6万张医学影像数据微调大模型的方法,使其从"门外汉"进化为专业的"AI放射科医生"。通过LLaMA-FactoryOnline平台,采用Qwen3-VL-30B-A3B稀疏激活架构,在保持30亿参数激活量的同时,实现了对高分辨率医学影像的精准分析。研究对比了DeepSpeed Stage2和Stage3两种微调方案,发现Stage2虽显存占用稍高,但能更好地捕捉微小病灶特征。经过优化的模型在BLEU-4和ROUGE等指标上提升显著,生成报告的专业
原创
博文更新于 2025.12.05 ·
636 阅读 ·
23 点赞 ·
0 评论 ·
15 收藏

Openai Agent Builder GPT-5+微调 知识库 构建智能客服

本文介绍了使用OpenAI平台构建智能工作流的完整流程:首先创建知识库并上传Markdown格式文档;然后设计工作流,根据业务需求配置节点类型;接着设置模型参数,包括推理方式、详细程度和输出格式等;完成发布预览后,通过Chatkit端进行集成测试;最后评估效果并进行模型微调,将优化后的模型重新部署到工作流中。该流程涵盖了从知识库构建到模型优化的全周期管理,适用于各类AI应用的开发部署。
原创
博文更新于 2025.12.04 ·
181 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

5个Lang:3-LangSmith简单实践

本文介绍了AI生产力工具LangSmith的Tracing功能实操指南。主要内容包括:1)环境准备,需安装相关库并获取API key;2)LangChain程序与LangSmith平台的对接方法;3)使用LangSmith调试Prompt的技巧;4)在线数据标注和收集操作,为后续自动化评估做准备。文章指出LangSmith能有效解决LLM应用生产级维护需求,包括指标监控、Prompt版本管理、系统评估和数据集管理等核心问题,提供可视化操作界面并与LangChain无缝集成。官方文档和平台入口也已提供,方便开
原创
博文更新于 2025.11.28 ·
346 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

5个Lang:2-LangFuse基本使用

本文介绍了开源AI应用维护平台LangFuse的使用方法,该平台可作为LangSmith的替代方案,支持与LangChain集成或直接对接OpenAI API。主要内容包括:1) 环境准备步骤,包括注册账号、创建项目、生成密钥和安装依赖包;2) 两种集成方式(OpenAI API和LangChain)的具体实现方法;3) 通过代码示例演示如何设置环境变量、创建跟踪记录并与OpenAI API交互。该平台可帮助开发者有效监控和管理AI应用运行状态。
原创
博文更新于 2025.11.27 ·
321 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

5个Lang:1-LangServe基本操作

本文介绍了安装LangChain相关开发环境的步骤。通过执行pip install命令,安装了包括langchain、openai、langserve、fastapi、uvicorn和sse_starlette在内的多个Python包及其依赖项。安装过程中自动下载并安装了所需的各种组件,如数据处理库dataclasses-json、网络请求库httpx、高性能JSON解析器orjson等。这些工具将为构建基于LangChain的AI应用提供必要的开发环境支持。安装过程显示所有依赖包均已成功下载并满足版本要求
原创
博文更新于 2025.11.26 ·
209 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Google Conversational Agents(Gemini) 搭建知识库问答案例

本文简要介绍了Google Cloud平台上构建AI问答系统的6个步骤:1)创建存储Bucket;2)上传文档到指定文件夹;3)创建知识库并关联云存储中的PDF/HTML/TXT文档;4)创建Agents;5)将Agents与知识库关联;6)进行问答测试。特别指出Markdown格式文档不被推荐使用。整个过程涉及存储配置、文档管理、知识库构建和AI代理部署等关键环节。
原创
博文更新于 2025.11.20 ·
377 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

刚刚,GPT-5.1发布,OpenAI开始拼情商

OpenAI发布GPT-5.1系列重大更新,包含GPT-5.1Instant和GPT-5.1Thinking两个模型。前者更智能温暖、指令执行能力更强,后者在复杂推理任务上表现更优。新模型实现了自适应推理、更快的响应速度和更自然温暖的对话风格,在数学编程评测中表现突出。升级首先面向付费用户推出,API版本也将同步更新。OpenAI采用GPT-5.1的命名方式表明这是GPT-5系列的重大改进,同时发布了详细的系统卡说明。未来将持续采用这种渐进式更新策略,确保用户体验平稳过渡。
原创
博文更新于 2025.11.14 ·
734 阅读 ·
7 点赞 ·
0 评论 ·
20 收藏

告别GPT!最强AI编程神器Cursor自研核心模型,速度快4倍,AI创业公司大佬:这是我用过最疯狂的模型之一!网友:性价比不俗 原

Anysphere公司推出的Cursor编程工具2.0版本正式发布其自研大型语言模型Composer,这是一款专为生产环境设计的高性能编程模型。Composer具备30秒内快速响应能力,在复杂代码处理上表现优异,采用强化学习+专家混合模型架构,支持多代理协作开发。该模型已在Cursor工程团队实际使用,提供从免费到200美元/月的多级订阅方案,在编程智能和生成速度上均优于同类产品。虽然其具体训练方法未完全公开,但Composer的出现标志着AI编程工具向自主核心模型发展的新趋势。
原创
博文更新于 2025.11.10 ·
1221 阅读 ·
13 点赞 ·
0 评论 ·
17 收藏

AI已经开始自己设计算法,并且超越顶尖人类专家,人类还能做什么?

摘要:谷歌DeepMind和加州大学伯克利分校的最新研究表明,AI已能自主设计并优化算法,性能超越人类专家。通过元学习和自动化研究范式(ADRS),AI在云成本优化、大模型推理加速等11个系统任务中取得突破性成果:节省26%云端成本、将负载均衡速度提升5倍、优化SQL查询效率3倍。这种"AI生成-验证"的闭环研究模式正重塑科研流程,使研究人员转向更高层次的问题定义和战略指导。随着ADRS框架发展,人机协作将开启研究新范式,形成AI与系统相互促进的加速循环。
原创
博文更新于 2025.11.10 ·
1823 阅读 ·
52 点赞 ·
0 评论 ·
38 收藏

OpenAI 披露:每周有超过一百万人与 ChatGPT 倾诉自杀倾向

本月早些时候,OpenAI 首席执行官萨姆・奥尔特曼(Sam Altman)在社交平台 X 上发文声称,公司已“成功缓解了 ChatGPT 中存在的严重心理健康问题”,但未提供具体细节。值得注意的是,奥尔特曼同时表示,OpenAI 将放宽部分限制,甚至允许成年用户与 AI 进行涉及情色内容的对话。此外,加利福尼亚州和特拉华州的总检察长也已警告 OpenAI,必须加强对使用其产品的青少年用户的保护 —— 这两州的态度甚至可能影响公司正在进行的重组计划。在周一的公告中,OpenAI 宣称,
原创
博文更新于 2025.11.09 ·
635 阅读 ·
22 点赞 ·
0 评论 ·
19 收藏

开源即登榜!登顶全球前十AI编程智能体,UCL初创团队开源Prometheus

来自伦敦大学学院(UCL)的初创团队EuniAI开源发布了AI软件智能体Prometheus。该系统在SWE-bench Verified上取得71.2%的Pass@1成功率,成绩已被官方确认并合并至主榜单。令人瞩目的是,这一成果来自高校科研团队,却已与产业巨头同台竞技,展现出学术研发在AI工程领域的产业级突破。
原创
博文更新于 2025.11.08 ·
572 阅读 ·
18 点赞 ·
0 评论 ·
18 收藏

OpenAI产品线拉出来吓我一跳,奥特曼不愧是YC出身

OpenAI正采用互联网大厂策略,以ChatGPT为核心(周活7亿用户),全面铺开多领域产品线,包括AI助手、浏览器、社交、购物、音乐生成等,构建完整生态。通过"先占入口再扩生态"的模式,利用流量优势降低创新风险,快速试错迭代。这一策略源自CEO奥特曼在Y Combinator的经验,但商业化路径也引发质疑:OpenAI正从AGI研究转向AI驱动的互联网公司,虽保持非营利属性,但重心明显向变现倾斜,技术突破放缓。当前做法虽务实,却少了颠覆性创新的想象力。
原创
博文更新于 2025.11.07 ·
1755 阅读 ·
33 点赞 ·
0 评论 ·
34 收藏

从 YAML 到 Markdown:规范驱动开发的演化与 AI 原生范式的崛起

从Kubernetes的YAML到AI时代的Markdown,技术领域正经历一场"声明式革命"的范式转移。云原生时代用YAML声明基础设施配置,AI原生时代则用Markdown声明智能体行为。GitHub的.prompt.md、AGENTS.md、SpecKit等工具标志着规范驱动开发(SDD)的兴起,开发者通过Markdown定义AI的语气、规则和能力模块,实现了从"编写代码"到"设计规范"的转变。这种从Infrastructure as Cod
原创
博文更新于 2025.11.07 ·
859 阅读 ·
26 点赞 ·
0 评论 ·
17 收藏

硅谷的「十万大裁员」:Meta按代码量裁员

硅谷AI浪潮下的"创造性破坏":2025年裁员潮深度解析 2025年硅谷正经历结构性调整,AI驱动裁员潮席卷科技行业。Salesforce、Meta、谷歌等巨头边裁边招,裁员策略甚至简单到按代码量决定名单,资源全面倾斜AI研发。Salesforce CEO贝尼奥夫直言AI已帮他减少4000个客服岗位,Meta则一边裁撤600名AI基础设施员工,一边保留顶尖AI团队。 现象背后呈现三大特征: 岗位替代性转移:传统客服、设计等基础岗位被裁撤,AI专家等高端人才需求激增; 战略重心重构:微软、
原创
博文更新于 2025.11.05 ·
604 阅读 ·
24 点赞 ·
0 评论 ·
14 收藏

上交、清华、微软、上海AI Lab等联合发布数据分析智能体综述,LLM化身数据分析师,让数据自己「说话」

《大语言模型驱动的数据分析演进:迈向通用智能体时代》综述论文系统梳理了LLM在数据分析领域的技术发展,从结构化数据扩展到多模态分析。研究团队提出五大演进方向:从字面理解到语义推理、从封闭工具到自由协作、从封闭数据到开放域分析、从静态工作流到动态生成、从人工Agent到自动生成框架。论文着重探讨了不同数据类型(结构化、半结构化、非结构化、异构)的处理方法,并提出了构建"通用数据分析智能体"的框架,强调语义理解与动态协作能力。同时指出当前在可扩展性、评估体系等方面的挑战,为未来智能数据分析系
原创
博文更新于 2025.11.08 ·
1041 阅读 ·
18 点赞 ·
0 评论 ·
9 收藏

20款办公AI工具:给你加10个专业助手

生成式AI工具是基于大语言模型和深度学习技术的应用,能够理解、生成和优化内容,实现任务自动化。其核心在于突破传统软件的规则限制,具备情境感知、自主学习和创造性输出的能力。这类工具可分为三类:内容创作类(如ChatGPT、Grammarly),支持文本生成、优化及多语言处理;视觉与多媒体类(如Midjourney、Synthesia),实现图像、视频的智能生成与编辑;自动化与协作类(如Zapier、Motion),通过无代码流程和智能调度提升工作效率。
原创
博文更新于 2025.11.04 ·
975 阅读 ·
30 点赞 ·
0 评论 ·
20 收藏

不再死记硬背,检索增强生成让AI实现开卷考试

摘要:检索增强生成(RAG)是一种融合信息检索与大模型的技术,通过实时检索外部知识库来提升AI回答的准确性和时效性。其核心优势包括解决传统大模型知识固化、信息过时等问题,同时降低训练成本。该技术运作分为离线知识库构建(数据收集、分块、向量化)和在线问答推理(检索-整合-生成)两个阶段。尽管面临系统复杂度、响应延迟等挑战,RAG技术通过动态更新知识的方式,显著提升了AI在专业领域和多轮对话中的表现,为AI应用落地提供了更可靠的技术支撑。
原创
博文更新于 2025.11.04 ·
513 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

企业级 RAG 系统实战:10 个项目踩过的坑(附代码工程示例)

本文分享了企业级RAG系统的实战经验。作者基于在制药、金融等行业构建10余个RAG系统的实践,总结了关键挑战和解决方案:1)优先进行文档质量检测并分类处理;2)采用层级化分块策略替代固定分块;3)构建专业领域元数据架构;4)实施混合检索方法。文章详细介绍了文档评分系统、分层检索等技术实现,并对比了不同模型的成本效益(Qwen可节省85%成本)。核心观点认为企业RAG的成功70%依赖工程能力,20%来自领域知识,模型仅占10%。这些经验对于处理大规模非结构化企业文档具有重要参考价值。
原创
博文更新于 2025.11.03 ·
928 阅读 ·
17 点赞 ·
0 评论 ·
9 收藏

Cursor发布首个编程大模型!代码生成250tokens/秒,强化学习+MoE架构

Cursor 2.0发布首款自研编码模型Composer,性能突破显著:30秒完成复杂任务,比同行快400%;支持语音生成代码、浏览器工具自主调试等新功能;采用强化学习训练的MoE架构,通过真实环境训练显著提升性能;每秒生成250个token,速度达到主流模型的2-4倍;但模型底层架构细节未完全公开,引发业界对其"自研"性质的讨论。
原创
博文更新于 2025.11.03 ·
1022 阅读 ·
26 点赞 ·
0 评论 ·
6 收藏
加载更多