超人阿亚
码龄13年
求更新 关注
提问 私信
  • 博客:101,826
    101,826
    总访问量
  • 75
    原创
  • 767
    粉丝
  • 14
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
加入CSDN时间: 2012-08-28

个人简介:公众号: dify实验室 主理人

博客简介:

同名公众号:dify实验室

博客描述:
AI时代与我一起快人一步
查看详细资料
个人成就
  • 获得1,766次点赞
  • 内容获得58次评论
  • 获得1,467次收藏
  • 代码片获得684次分享
  • 博客总排名20,709名
  • 原力等级
    原力等级
    4
    原力分
    903
    本月获得
    2
创作历程
  • 75篇
    2025年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 1

兴趣领域 设置
  • Python
    python
  • 软件工程
    需求分析个人开发规格说明书产品运营流量运营软件工程流程图设计模式
  • AIGC
    AIGC
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

27人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【产品经理学AI】用 Dify 零代码搭建 AI 用研助理,5分钟完成100个虚拟用户调研

本文介绍了如何利用Dify平台构建一个"AI用研助理"系统,帮助产品经理快速完成用户调研。该系统只需输入用户画像、问卷内容和模拟人数,就能自动生成虚拟用户并收集反馈,最终输出专业分析报告。文章详细展示了从配置输入节点到生成虚拟用户、模拟问卷回答、再到汇总分析的全流程搭建方法,采用工作流模式实现自动化处理。该方案能显著提升用研效率,节省传统调研的时间和人力成本,并可根据需求进一步扩展功能。
原创
博文更新于 2025.10.10 ·
500 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

【AI产品经理学习】从0到1保姆级实战:用 Dify Agent + Python 打造自动化竞品分析AI助手(附完整代码)

通过这个实验,我们不仅构建了一个非常实用的AI助手,更重要的是,我们完整地经历了一次从需求分析、架构设计、技术攻坚到最终实现的AI应用工程落地过程。这比单纯调用一个API要酷得多!当然,从这个Demo到真正成熟的生产级应用还有很长的路要走,但这无疑是一个完美的起点。我是阿亚,我们下次再聊!觉得这篇文章对你有帮助吗?请帮忙点个「赞」或「在看」,让需要的人也能看到!下一个你想看我研究什么主题?欢迎在「评论区」给我留言!
原创
博文更新于 2025.09.08 ·
1136 阅读 ·
28 点赞 ·
0 评论 ·
12 收藏

【AI产品经理学习手册】你的RAG应用为什么总“胡说八道”?这份21项优化自查清单,帮你根治AI幻觉

《根治RAG应用"胡说八道"的21个关键检查点》摘要:本文分享了Dify实验室在构建知识库问答系统时对抗AI"幻觉"问题的实战经验。作者通过"开卷考试"的比喻,指出检索质量决定生成上限的核心观点,并提供了覆盖知识库构建、检索策略、生成优化的21项详细自查清单。重点包括:文档预处理技巧、语义切片策略、混合搜索方法、提示词工程要点等,同时推荐了BGE-M3等实用工具。文章强调,优化RAG系统需要从数据源头把控质量,而非单纯依赖大模型能力,为开发者提供了
原创
博文更新于 2025.09.08 ·
1016 阅读 ·
26 点赞 ·
0 评论 ·
18 收藏

【AI产品经理学习案例】深度实战:我用 Dify 复刻了 1688 的 AI 搜索,“多路召回”才是灵魂

摘要:本文介绍了如何从0到1构建一个能理解自然语言的AI搜索系统。作者通过踩坑发现单纯依赖大语言模型(LLM)存在响应慢、结果不准确等问题,转而设计出"多路召回+重排序"的架构方案:让LLM担任"项目经理"拆解用户需求,三个专家模块(向量检索、文本检索、属性过滤)并行处理,最后由LLM进行智能排序。文章详细演示了使用Dify平台搭建该工作流的步骤,并探讨了生产环境需要考虑的数据同步、性能优化等问题。这套方案验证了合理分工的AI系统架构比单一模型更具实用性。
原创
博文更新于 2025.08.28 ·
674 阅读 ·
20 点赞 ·
0 评论 ·
7 收藏

【AI产品经理学习案例】AI自动化革命:5步构建一个“信息搜集+报告生成”的AI助理

【摘要】Dify实验室教你5步打造AI报告助手:1.需求拆解(明确指令);2.技术选型(选择Dify平台+大模型+网页搜索工具);3.工作流编排(设计自动化流程);4.提示词工程(角色扮演+任务拆解);5.测试迭代(持续优化)。通过搭建这个"数字化员工",可将耗时数日的报告生成工作自动化,实现人机协同的高效创作。该方案基于Dify平台的模块化功能,让AI产品经理能快速验证原型。(149字)
原创
博文更新于 2025.08.28 ·
786 阅读 ·
5 点赞 ·
0 评论 ·
18 收藏

窥探未来,巨头们的秘密武器,用户模拟大模型将如何改变产品研发流程?

《数据巨头的终极武器:用户行为大模型将如何重塑商业竞争》 本文探讨了科技巨头可能利用海量用户数据构建"用户行为大模型"(UBLM)的未来趋势。与通用大模型不同,UBLM基于企业独有的用户行为数据,能够高度精准地模拟和预测用户行为反应。这种技术将彻底改变产品开发模式,从传统的A/B测试升级为"战略推演",使企业能在虚拟环境中进行零成本试错。文章指出,UBLM将成为企业难以复制的终极竞争壁垒,但也带来隐私侵犯、算法偏见等伦理风险。目前,学术界和工业界已开始相关探索,预示着
原创
博文更新于 2025.08.28 ·
744 阅读 ·
32 点赞 ·
0 评论 ·
12 收藏

【AI产品经理学习】你的AI应用正在“裸奔”!一份防止Prompt注入攻击的实战指南

本文介绍了AI应用中面临的Prompt注入攻击风险,并提供了三层防御策略。通过"秘书"比喻解释了直接和间接Prompt注入攻击的原理,提出"三层过滤法"防御方案:1)输入端使用分隔符和关键词检测过滤恶意输入;2)指令端加固SystemPrompt设定明确安全守则;3)输出端进行格式校验和敏感词检测。文章强调AI应用安全需要持续维护,这套防御体系可帮助开发者建立基本防护,但需不断演进以应对新型攻击。
原创
博文更新于 2025.08.24 ·
905 阅读 ·
11 点赞 ·
0 评论 ·
19 收藏

【AI产品经理学习】讲给产品经理的AI技术指南:用Dify彻底搞懂RAG、Agent和微调

《AI产品经理技术指南:RAG、微调与Agent解析》摘要 本文面向AI产品经理,介绍了当前最热门的三大AI技术概念:RAG、微调和Agent。RAG(检索增强生成)如同给AI配备"外部大脑",通过知识库检索提升回答准确性;微调则是改造AI"内部大脑",通过特定数据训练塑造专属风格;Agent让AI具备行动能力,能调用工具完成复杂任务。文章通过生动比喻解析技术原理,对比分析各自适用场景及优劣势,并演示如何在Dify平台快速实现这些应用。作者强调这三种技术可组合使用,帮
原创
博文更新于 2025.08.24 ·
1294 阅读 ·
36 点赞 ·
0 评论 ·
24 收藏

解构1688 AI黑盒:从用户交互到技术实现,五大功能全链路拆解

通过这次“CT扫描”,我们可以看到1688 AI版成功的关键,在于其系统性的架构设计底层是通义千问系列大模型;中台是统一的AI网关(如Higress)和Prompt编排;技术栈是NLP、CV、AIGC、向量数据库、RAG等技术的有机融合;应用层则是将这些能力无缝嵌入到采购全链路的五大功能中。它解决的不是单一环节的效率问题,而是端到端的业务流程再造。这为所有希望利用AI改造传统行业的公司,提供了一份极具价值的实战蓝图。觉得这篇文章对你有帮助请帮忙点个「赞」,让需要的人也能看到这篇文章。
原创
博文更新于 2025.08.18 ·
667 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

你的供应链还在“裸奔”吗?收好这份AI+供应链转型蓝图

关注我,让我的实验,成为你的经验。大家好,我是dify实验室的超人阿亚。过去几年,港口拥堵、原材料短缺、订单交付延迟... 几乎每个老板和供应链负责人都被折磨得焦头烂额。我们不禁要问:为什么现代供应链如此脆弱?在今天这个持续动荡的“新常态”下,它就像一辆在F1赛道上表现完美的跑车,一旦开上崎岖的越野路段,就立刻趴窝。这篇文章,不是一篇普通的分析报告。它是一份完整的。我们将从“为什么要做”的战略必要性,到“做什么”的核心AI模块,再到“怎么做”的技术架构和落地路线图,为你提供一套完整的解决方案。
原创
博文更新于 2025.08.18 ·
577 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

AI正在接管产品决策链,产品经理的“不可替代性”还剩多少?

公众号"Dify实验室"探讨AI技术发展对产品经理角色的冲击与重塑。文章指出,随着Qwen 3.0发布、豆包作图等AI技术突破,产品经理的传统技能如流程图绘制、需求文档撰写等正面临挑战。作者分析了AI带来的四大焦虑:核心技能被替代、能力恐慌、价值边界模糊和技术黑箱问题。同时提出应对策略:成为AI超级用户、提升AI素养、聚焦人机协同设计、强化软实力。文章强调产品经理应主动拥抱AI,进化为价值定义者和体验架构师,在AI时代找到不可替代的定位。
原创
博文更新于 2025.08.17 ·
1041 阅读 ·
24 点赞 ·
0 评论 ·
29 收藏

【保姆级教程】Dify工作流终极指南:从入门到精通(附案例)

Dify实验室推出基于LLMOps平台的AI应用开发指南,系统讲解Dify工作流编排技巧。文章首先解析核心概念(节点、变量、工作流类型),详细介绍各类节点功能和模型能力,包括LLM推理、知识检索、代码执行等关键组件。重点分享五阶段实施框架:需求分析、模块化设计、模型集成、测试优化、部署维护,并附有实际案例。最后强调数据安全和成本控制注意事项,帮助开发者从零构建高效可扩展的AI应用。包含丰富的交互讨论点,适合收藏反复学习。
原创
博文更新于 2025.08.17 ·
4775 阅读 ·
22 点赞 ·
0 评论 ·
29 收藏

我用一条“无害”的Prompt,轻松搞垮了一个Dify应用

《AI应用安全防御五步法:从"社死"到铜墙铁壁》 摘要:Dify实验室分享了一套AI应用安全防御框架,源于一次系统提示词被轻易攻破的教训。该方案包含五层防护:1)输入层设限,过滤高危指令;2)中间层隔离,封装用户输入;3)执行层控制权限,采用双模型验证;4)输出层审查,防止敏感信息泄露;5)日志闭环持续优化。文章强调安全不是一次性任务,而是需要融入开发文化的持续过程,为AI开发者提供了一套实用的安全实践方案。(149字)
原创
博文更新于 2025.08.16 ·
835 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

PromptPilot-Prompt生成、调优、评估和管理全阶段管理工具

《Dify实验室:PromptPilot工具助力提示词工程科学化》 PromptPilot工具,旨在解决大模型应用开发中的提示词工程痛点。该工具通过结构化工作流(生成-调试-评测-优化)实现提示词科学化管理,支持版本控制、批量测试和算法优化。实证研究显示,在品牌评价情感分类任务中,PromptPilot能有效提升提示词质量,使综合评分从3.5提升至3.9分。该平台将提示词开发从"玄学"转变为可量化的工程实践,显著降低开发门槛,配套的豆包1.6模型也
原创
博文更新于 2025.08.16 ·
910 阅读 ·
27 点赞 ·
0 评论 ·
18 收藏

大模型生成高质量文章内容的一种方法-受圆桌讨论启发

Dify实验室公众号发布了一篇关于利用LLMOps平台Dify构建"DeepTalk"高级聊天应用工作流的文章。该工作流能自动完成议题分析、虚拟嘉宾设置、多轮讨论模拟和结论汇总全过程:首先将用户议题拆分为三个关联性子话题,生成四位不同背景的虚拟专家,然后组织专家针对每个子话题展开讨论(支持调用外部工具),最后整合各方观点生成结构化结论。文章详细介绍了工作流的设计思路和8个关键编排步骤,展示了Dify平台在可视化编排、多节点协同(LLM、代码执行、Agent等)方面的强大能力,为复杂议题的
原创
博文更新于 2025.08.16 ·
1821 阅读 ·
55 点赞 ·
0 评论 ·
8 收藏

39种Dify常见报错及解决方案汇总

《Dify常见错误与解决方案指南》摘要:Dify作为开源LLM开发平台,在使用过程中可能遇到安装部署、插件开发、API调用等问题。本指南系统梳理了各类常见错误,包括Docker环境配置、数据库连接、插件签名验证、工作流节点报错、模型接入失败等场景,提供详细的问题分析和解决方案。重点涵盖环境检查、配置修改、日志分析等实用技巧,帮助开发者快速定位问题。建议用户遵循官方文档规范操作,合理利用平台内置错误处理机制,并通过日志分析优化开发流程,以提升Dify使用效率和稳定性。
原创
博文更新于 2025.08.16 ·
1642 阅读 ·
20 点赞 ·
0 评论 ·
24 收藏

Dify的日志与标注

Dify的日志功能帮助观察和优化AI应用表现,记录所有WebApp和API交互数据。用户可在日志控制台查看对话记录、AI回复及评价标注,团队协作时最新标注会覆盖旧记录。免费版仅保留30天日志,需升级或部署社区版延长保存时间。运营人员可对日志点赞、点踩或标记改进回复,这些标注将用于未来模型微调,当前版本仅支持预览。
原创
博文更新于 2025.08.06 ·
1154 阅读 ·
9 点赞 ·
1 评论 ·
5 收藏

掌握这五个小技巧,让你的 Dify 应用更安全

Dify实验室分享AI应用安全防护策略,提出五层防御体系应对提示词注入风险:1)用户输入层进行字符限制、关键词过滤和文本净化;2)安全中间层隔离用户输入并严格校验;3)模型执行层采用双模型架构和最小权限原则;4)输出层进行内容审查和敏感信息屏蔽;5)建立日志闭环机制持续优化防御。该方案强调AI安全需要纵深防御体系和持续迭代的文化,而非一次性解决方案。文章来自Dify实验室公众号,分享一线实战经验。
原创
博文更新于 2025.08.06 ·
978 阅读 ·
31 点赞 ·
0 评论 ·
9 收藏

基于LLM与本地Pandas的实验demo:从0到1构建混合式数据分析引擎

【摘要】Dify实验室分享基于LLMOps平台构建智能数据分析引擎的实践方案。文章详细介绍了如何搭建本地Pandas API服务作为核心计算引擎,使用Flask框架创建RESTful接口处理大模型生成的代码指令。重点展示了API设计、错误处理机制以及与Dify工作流的集成方法,实现自然语言分析请求→代码生成→数据计算→结果解析的完整闭环。该方案创新性地采用"样本预览+本地计算"模式,既保障数据安全又控制成本,为AI与专业工具的结合提供了实用参考案例。
原创
博文更新于 2025.08.04 ·
816 阅读 ·
11 点赞 ·
0 评论 ·
29 收藏

Dify终极白嫖指南:1亿免费Token,轻松搞定联网搜索

Dify实验室推出基于腾讯元器平台的免费联网搜索解决方案,通过HTTP请求节点实现私有化搜索工具构建。该方案利用腾讯元器1亿Token免费额度,解决了Dify官方插件的网络限制和高成本问题。实践步骤分为三阶段:在腾讯元器构建搜索服务并获取API凭证;在Dify配置HTTP请求节点并发布为工具;最后在Agent中验证工具调用。方案具有解耦、零成本、私有化等优势,同时提供了400错误排查和性能优化建议,展示了Dify平台强大的可扩展性。
原创
博文更新于 2025.07.25 ·
1071 阅读 ·
29 点赞 ·
0 评论 ·
15 收藏
加载更多