本文探讨大模型时代产品经理的价值与变革,指出大模型无法取代产品经理,反而带来职业春天。PRD作为消除幻觉和确认责任的重要工具在当前和未来仍有价值。全民生成式应用是伪命题,大多数人仍需要封装好的工具。未来产品研发将分为三类角色:提问题者(产品经理)、解决问题者(工程师)和审美负责人。细分需求赛道和"用完即抛"的解决方案具有发展潜力,人的局限和AI的局限使得产品经理等角色长期存在。
这是一篇合辑文,近期跟很多朋友交流了下大模型应用的感受,也有不少观点碰撞,其中很多内容实际上一脉同源,于是整理一下。
这篇文章也不讲究什么行文逻辑了,由观点引出观点,用臆测评价臆测,主打一个自己说得舒坦。
明确一个贯穿全文的观点:我越来越相信大模型无法取代产品经理,甚至觉得产品经理的下一波春天要到来了。

1.大人,时代变了吗?
起因是我发了一系列产品经理怎么用Gemini的文章,发布之前我就预料到可能会有一些不同的声音,发布之后也确实收到一些读者的嘲讽。因为我的这一系列教程都是在用下个时代的工具实现上个时代的产品,比如用Gemini写PRD、做原型图标注等等。
群嘲的声音也无非就是“PRD都是上个时代的东西了,下个时代根本不需要PRD了”之类的话。那么,大人,时代变了吗?
之前我的想法也没那么成熟,现在已经基本说服了自己了——大人,时代没变,至少现在没变。
这件事要分成两部分来聊。
第一部分,别管未来怎么变,至少现在还没变呢,少年,你爷爷还是你爷爷。
其实在我的大模型实践过程中是有感觉的,对于小团队,PRD确实可能不是必须的;更极致一点,对于超级个体,自己能做产品设计、研发全流程,通过跟AI对话把所有的业务逻辑存储在大模型的记忆里,然后借助高保真demo,直接vibe coding出产品,是存在可能的(实际上现在已经有不少人是这么干的了)。
但是,当下的互联网行业吃的盆满钵满的,这些业务和组织形态并没有完全被大模型改变;或许这些头部公司的同行们多多少少已经把大模型用到自己的工作中了,但现在他们的组织形态、协作模式仍然是以所谓的“上个时代”的模式为主的。并且据我浅薄的了解,下面没有任何一家公司是不需要PRD的。

我们评价一个解决方案的好坏一定不能只评价收益,或者只评价成本,具备ROI视角是产品经理的门槛技能。
说回用Gemini为上个时代的产品经理干活这件事,我琢磨出来怎么用它写PRD用了大半天,调教好怎么用它标注原型图用了半小时。哪怕明年、下个月,世界天翻地覆了,再也不需要PRD了,那我也能凭借这个工具轻松足够长的时间了。这件事对我自己的ROI足够高。
另外,这一系列语焉不详的教程发出来,支持者的数量是远大于嘲讽者的,这是群众路线——哪怕此时此刻已经有一些团队不依赖PRD了,但这个世界上有非常多的团队非常依赖PRD,有非常多的产品经理需要这方面的帮助。
群众路线,这可能是中国最伟大的产品经理提出的路线。时髦点的话讲,以用户为中心。
前段时间工作比较忙,很多晚上,忙碌一天之后皮质醇过高,“Tired but Wired”,我开始读史助眠。之前我很不喜欢读近代史,总觉得教科书里讲的太片面、太一边倒。现在能找到更详实的史籍,也在大模型的帮助下了解到更多信息,我被这段历史震撼了。无论是抗日战争阶段还是解放战争阶段,很多时候红军、八路都能做出各种“开天眼”的操作,其中很关键的一个点是“信息量”的差距。敌军一举一动都传到我方指挥部里,而我方大军齐刷刷地在敌军眼皮子底下行军,敌军毫无察觉。除去无线电情报战、卧底工作的能力差别外,有个重要的因素就是“群众路线”。老乡知道该给谁说话,该替谁隐瞒。日军和国军都惦记着大城市,只有红军和八路深入农村;日军和国军都惦记着分隔势力、扩大统治范围、攫取更多财富,红军和八路在最困难的时候还帮老乡挑水。
总惦记着先进的大模型产品、瞧不起上个时代牛马工人的那些人,像不像盘踞在灯红酒绿的大上海、印钞机开到冒烟的委员长及家人?

而且,还有个更底层的逻辑,很多人只盯着“PRD”这三个字母,却没看透这背后的本质。
那些嘲讽我还在用AI写PRD的朋友,可能误解了我的教程。我那些教程的核心逻辑,从来不是为了得到一份什么这样那样的文档。
真正的核心在于“过程”:是你通过细致的对话、反复的调教、逻辑的拆解,把你自己脑海中那些模糊的“业务洞察”,转化成了大模型里那一坨清晰的“认知”。
这一步才是最难的,也是最有价值的。一旦大模型“懂”了你的业务,至于下一步它是吐出一份PRD给现在的开发看,还是吐出一个高保真Demo给老板看,亦或是直接Vibe Coding吐出代码自己跑,那只不过是“输出格式”的区别罢了。
业务认知是石猴子,PRD只是它在旧时代的六根。
只要你掌握了构建灵魂的能力,以后无论你是想给它换个“代码肉身”还是“交互肉身”,不就是一句话的事儿吗?但前提是,你得先学会怎么把你的脑子“同步”给AI。
第二部分,就算下个时代,我相信“产品需求文档”仍然有价值存在。
我们先讨论下“产品需求文档(PRD)”的作用到底是什么?抛开“产品的研发说明书”不谈,我认为至少还有两个非常关键的作用。
第一,消除幻觉。“幻觉”这件事可不是只有大模型时代才会有的,想想你们在工作中有没有这种对话,“我以为那个时候咱俩聊清楚了啊”,这就是幻觉。把共识落在纸面上,明确地说出共识是什么,这就是消除幻觉的过程。在产品研发阶段,只有PRD具备消除幻觉的功能。BRD/MRD对实现方式的定义不够明确,设计稿缺乏对后端的定义,技术文档、测试用例有阅读门槛、不能让上下游所有角色通畅读懂。只有PRD。
我之前想过,以后产品经理的工作方式会不会是疯狂跟大模型对话,然后把这个对话串(例如是个id)丢给研发或者设计时作为PRD呢?不行的,虽然产品的核心逻辑可能确实通过多轮对话存储起来了,但它不是明文的,只要你没有明确写出来,我们就无法确认我们共识的是否同一个东西。
当然PRD的内容、格式会发生变化,别管是README还是什么别的,但它里面的核心要素一定不会少,“为什么要做这件事”、“这件事该怎么做”、“这件事有什么预期”这些重要的要素必须明文记录下。配合默契的一人公司、小团队可能会取代掉这个环节,但是大公司、大组织无法省略这一步骤。
第二,确认责任。只要有上下游协作,就必须要有确认责任的步骤;参与协作的组织越复杂,确认责任的环节越严格。简单的确认责任就是签个字、握个手,复杂的确认责任就是写清楚需求文档、评审通过。
上面我为什么只提到互联网公司,因为扩大到全行业就是欺负人了。我们应该都相信全行业的信息化、大模型赋能是必然的趋势,那么也就不得不承认可能在很长的时间里,全行业都存在“混搭”的场景——一方面是大模型产品在某些关键环节大大提效,另一方面是传统行业的各种习俗或者特点,要求必须要比互联网行业更严格的“产品需求文档”,甚至是大部头的、格式要求严苛的标书。

这里引出一个小话题,未来的大公司还会不会存在?我最近意识到这个答案也是很简单、很明显的——大公司一定存在,因为资源一定是内聚的、甚至是垄断的。资源有没有可能是离散的呢?不可能的兄弟,这个没法展开聊,这其实是个意识形态的问题,并且我们目前在任何一种意识形态中,几乎都看不到成功的“离散的资源分布”案例。不敢继续聊了。
2.全民生成式应用是伪命题
写了这么多字,这才聊完一个话题。看来最好的方法还是拆成几篇文章,但我聊得不尽兴,还是得继续说下去。
有一个观点是:既然大模型能力大概率会进一步增强,生成解决方案的门槛不断降低,那么以后有可能我们所有人的需求都是用自然语言描述给大模型、由大模型生成解决方案来解决的。
之前我模模糊糊地觉得这个观点是对的,方向好像正确。最近的切身体会让我感受到,直接跟大模型交互,这件事并非适合所有人。
拿最近的例子,我在公众号和小红书发的这些教程里面,占比最多的评论可能是“求XXX的教程”、“XXX也能用gemini做吗?”平心而论,如果认真读过我前面写的任何一篇文章,看到我是怎么跟gemini对话的,你直接把同样的问题问给gemini就能一步一步找到答案了,因为我也是这么做的。互联网从业者尤其是产品经理,已经是解决问题相对强的人群了,更何况大众用户了。
我认为很多用户所谓的“不会问问题”指的不是他们不知道怎么很好地描述一个问题,而是他们根本没有意识到“自己需要问问题”。
B站装机猿那个梗,“那你能帮帮我吗?”

我认为饭来张口是刻在人类DNA里面的天性,模型能力再强,也很难撬开不张嘴的人。或者换句话说,假如真的有一天模型能力发展到我一个眼神、一个表情,它就能悟到我要问什么问题、并且给我解决方案,可能那一天不会太近。可能需要我们身边有一堆多模态的传感器?抑或是脑机接口?在此之前,大部分人仍然最需要封装好的工具。
所以我认为未来有足够的时间留给创作者们施展才艺、设计解决方案、获得收益。
这件事放到细分需求赛道,可能效果会更好。因为这些赛道大公司看不上、贴身下场的竞争力又弱于小团队,那么我们只需要等着大模型技术的发展让更多有想法的个体和小团队具备足够高效地为细分需求提供解决方案的能力了。
3.增长可能是细分需求最致命的瓶颈
而解决方案可能是OnlyFans。
我之前完全没意识到增长这个问题,但现在很多独立产品或多或少都面临着这个问题,“叫好不叫座”。前期可能因为各种原因在社交平台传播了一波,后来慢慢增长乏力、淡出主流视野。
我认为解决增长问题的一剂良药很有可能不是增长手段本身,而是开发效率。
如果你苦心孤诣花上数个月(传统开发模式)或者数周(复杂产品的vibe coding开发周期)做出来一个产品,内心的预期一定是持续地获取几万、几十万甚至更多的活跃用户。在当前的应用分发格局下显然是非常难的。
但是,如果你的解决方案只需要花几个小时(几十轮对话调教)甚至十几分钟(几轮对话调教)就能完成,你对它的用户量级预期是多少?我的个人预期是,哪怕每人给我一块钱,有几十人付费我就很开心了,超过一百人我就要奖励自己吃顿好的。
量变引发质变。
这一类应用可能是什么应用呢?很有可能是“用完即抛”的解决方案。如果你要用一个产品几个月,自然会有更严格的标准;如果你只是拿来应付下短时的需求,那对解决方案的评价标准肯定是不一样的。
我现在用大模型做的本地html小工具全都是“用完即抛的”。比如这个阶段我的工作重心是某件事,就需要对应的工具,可能一个月后就不需要了;再比如这几天我家里纷纷甲流,就需要一个提醒家人按时吃药、每次吃几粒的工具,这个工具的寿命可能只有五天;再比如闺女发烧的时候,我可能需要一个我跟老婆共享的、每1小时提醒我们量体温的工具,这个工具的寿命不超过12小时……
那么这种“用完即抛”的产品会是什么评价标准呢?我也想到两个方面。
一方面是对细分需求的洞察力,发现问题的能力。比如我前面写的怎么写PRD,不谦虚的说,我可能在牛马产品经理方向的技能点加得太满了,这方面确实可能相比别人而言,更容易发现问题、更容易提出好的解决方案、更容易把一件事讲清楚。如果你能在某个其他的细分赛道也找到自己独特的洞察力,那你创作的解决方案一定是受这部分人欢迎的。
第二方面,可能是更重要的方面,就是审美。可能同样的todo工具有100个,为什么你选了那一个,很有可能是你欣赏它的审美。当一个细分赛道也聚集了足够多负责发现问题的人、而大模型可以很好胜任低成本提供解决方案的能力,让你的方案脱颖而出的,就剩下你的审美了。
围绕细分赛道,彰显个人审美,我能想到的产品形态就是一个产品经理的OnlyFans。过去的应用时代,大家为了解决方案付费,无论是买断还是订阅,都是花钱获得解决问题的能力;未来的应用时代,有没有可能大家为解决问题的人付费呢?他能提供这个领域里面持续地、花样百出的、渗透到细枝末节的问题解决能力,同时他有独特的品味和审美。
我相信大模型对创作效率的提升最终会产生质变——如果我们能花半个小时就创作一个60分的产品,可能下一步最关键的问题并非怎么把60分做到95分,再给这个精致的作品匹配足够多的用户;而是我怎么做100个60分的其他东西,然后让足够多的人关注我的个人IP。

哇哦,产品经理的春天要来了,各种意义上的。
4.大模型杀不死产品经理
写到这里,我越来越觉得这句话无比正确了。
在我的脑海中,产品研发流程里会只剩下三种角色——
(1)负责提问题的人
(2)负责解决问题的人
(3)负责审美的人
当然很多团队这些角色会相互融合,但一定必须有这几种能力。
负责提问题的人对应现在的产品经理,他们必须关注具体的场景、关注具体的用户,提出好问题。他们的工作内容可能是跟大模型疯狂对话,把自己对业务的洞察转化成大模型的认知。当然他们必不可少会有一些文档工作,这些文档会成为上下游沟通消除幻觉和确认责任的凭证。
负责解决问题的人对应现在的工程师,他们必须关注解决手段,不仅是确保解决方案能够顺利实现,也要考虑部署、效率、迭代等等种种问题,他们是给大模型安排任务的架构师。
负责审美的人对应现在的设计师,他们必须确保在解决问题的能力井喷的时代下,自己的产品有足够的魅力吸引特定用户、获得用户的喜爱。这种喜爱是超越过“解决问题”层面的,是生理上的、情绪上的喜爱。
并且我还相信两条局限是长期难被打破的——
第一条是人的局限。即便世界上少部分人是超人、是英雄,但大部分人在正态分布的肚子上,我们大部分人无法在这三个方面都做到顶尖。可历史不是由英雄书写的,历史是由人民铸就的。
如果说人民群众是组成历史的滔滔长河,英雄人物不过是偶尔在长河上翻腾起的闪亮浪花。
第二条是AI的局限。我不去判断AI有没有可能在某一天能完美集成这三方面的能力,然后全流程取代人。假如那一天出现了,真正麻烦的可不是到底谁来写PRD这件事,而是机器人三定律到底还有没有用了?

如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)

👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。


👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

👉4.大模型实战项目&项目源码👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)

👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)

👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

为什么分享这些资料?
只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。


CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈


被折叠的 条评论
为什么被折叠?



