小敢摘葡萄
码龄4年
求更新 关注
提问 私信
  • 博客:1,554,079
    社区:85
    1,554,164
    总访问量
  • 1,196
    原创
  • 927
    排名
  • 9,577
    粉丝
  • 24
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2022-05-28
博客简介:

xiaoganbuaiuk的博客

查看详细资料
个人成就
  • 获得20,445次点赞
  • 内容获得67次评论
  • 获得20,043次收藏
  • 代码片获得25,064次分享
  • 原力等级
    原力等级
    9
    原力分
    9,174
    本月获得
    163
创作历程
  • 416篇
    2025年
  • 499篇
    2024年
  • 239篇
    2023年
  • 45篇
    2022年
成就勋章
TA的专栏
  • python
    20篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 6

TA的推广
兴趣领域 设置
  • 编程语言
    python
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

大模型杀不死产品经理,但未来我们可能要做产品界的OnlyFans

本文探讨大模型时代产品经理的价值与变革,指出大模型无法取代产品经理,反而带来职业春天。PRD作为消除幻觉和确认责任的重要工具在当前和未来仍有价值。全民生成式应用是伪命题,大多数人仍需要封装好的工具。未来产品研发将分为三类角色:提问题者(产品经理)、解决问题者(工程师)和审美负责人。细分需求赛道和"用完即抛"的解决方案具有发展潜力,人的局限和AI的局限使得产品经理等角色长期存在。这是一篇合辑文,近期跟很多朋友交流了下大模型应用的感受,也有不少观点碰撞,其中很多内容实际上一脉同源,于是整理一下。
原创
博文更新于 12 小时前 ·
814 阅读 ·
39 点赞 ·
0 评论 ·
14 收藏

企业级智能问答系统踩坑实录:RAG老是达不到效果的优化方案

本文分享了一个智能问答系统的开发优化过程。针对三个不同子场景的智能问答需求,作者最初采用纯RAG技术建立三个知识库,但效果不佳,出现场景判断不清和召回率低的问题。后通过重新思考,改为按数据类型建立两个知识库(结构化与非结构化),并实现条件查询和相似度查询两个工具,让模型根据需求自主选择。此方案简化了技术实现,大幅提升了系统效果,解决了场景区分和混合数据查询问题。大模型应用开发流程正确,但结果不一定正确。由于大模型技术的复杂性,再加上不同业务场景的特殊需求,导致大模型应用的开发难度很大;
原创
博文更新于 12 小时前 ·
501 阅读 ·
16 点赞 ·
0 评论 ·
8 收藏

构建高效AI智能体(AI Agents)的十条黄金法则,从入门到精通,一篇就够了!

本文提出构建高质量AI智能体的十条核心法则:拒绝为AI而AI,构建小巧专业解耦的系统,强制结构化输出,解释任务背景而非仅指令,编排优于完全自治,优先提示词工程而非微调,重视工具描述,使用缓存与共享机制,以及全面记录日志。强调AI智能体构建是系统工程,需架构设计与细节并重,才能构建出稳定高效且有业务价值的智能系统。建AI智能体(AI Agents)已成为技术领域最热门的话题之一。然而,从最初的概念验证到真正可用于生产环境的系统,这中间存在着巨大的鸿沟。
原创
博文更新于 前天 14:16 ·
380 阅读 ·
11 点赞 ·
0 评论 ·
14 收藏

AI提示词工程完全指南(超详细)从入门到精通,一篇搞定!建议收藏!

提示词工程的优化与迭代提示词工程强调通过不断优化提示词,提高大模型的输出质量。
原创
博文更新于 前天 13:45 ·
516 阅读 ·
12 点赞 ·
0 评论 ·
22 收藏

AI Agent开发教程(全面详解)从入门到精通,一篇就够了,值得收藏!

本文系统介绍了AI智能体的七大设计模式,包括提示链、路由、并行化三种工作流模式,以及反思、工具使用、规划、多智能体四种智能体模式。文章详细对比了工作流与智能体的适用场景,强调了在构建智能体系统时应保持简洁、处理不确定性,并根据实际需求组合不同模式。通过实证评估不断优化设计是构建高效智能体系统的关键。AI Agent、 Agentic AI、Agentic架构、Agentic工作流、Agentic模式——如今,智能体的概念无处不在。但智能体究竟是什么?我们又该如何构建稳健高效的智能体系统?
原创
博文更新于 前天 11:59 ·
1170 阅读 ·
31 点赞 ·
0 评论 ·
8 收藏

如何微调任何Embedding模型?从入门到精通,普通电脑也能做,一篇就够收藏!

Adapter适配器微调是一种参数高效的微调方法。在预训练模型上添加一个轻量级的适配器层,只训练这个适配器,而冻结原始模型参数。原始嵌入 → [冻结的基础模型] → [可训练的Adapter层] → 微调后的嵌入参数少:Adapter层通常只有几MB,而全量微调需要保存整个模型(几百MB到几GB)训练快:只更新少量参数,训练速度提升10倍以上效果好:在特定任务上,Adapter微调的效果往往接近全量微调Adapter微调是一种参数高效、成本低廉、效果显著的嵌入模型微调方法。
原创
博文更新于 2025.12.17 ·
870 阅读 ·
17 点赞 ·
0 评论 ·
25 收藏

GPT-5.2 发布后,我意识到一件事!

GPT-5.2标志着AI从"工具升级"转变为"生产方式升级",AI角色从辅助工具进化为组织能力,进入"可交付阶段"。它以稳定可靠的表现,使AI能从头到尾完成任务,对AI创业、Agent应用、Prompt工程、开源闭源竞争和小团队发展产生五大冲击。未来AI竞争重点将从"会不会"转向"稳不稳",掌握AI组织能力将成为关键。很多人第一反应是:“GPT-5.2 又强了一点。”但说实话,如果你只看到“强不强”,那你可能已经错过了这次发布真正可怕的地方。我这几天反复体验 GPT-5.2 之后,心里反而有点发凉。不是
原创
博文更新于 2025.12.17 ·
931 阅读 ·
14 点赞 ·
0 评论 ·
10 收藏

AI大模型教程:从零基础入门到精通,一篇掌握AI核心原理与实战应用,不看后悔!

文章指出AI最本质的特点是泛化能力,即触类旁通、举一反三的能力。与传统软件只能管理已有内容不同,AI能在内容间生成新知识,但其泛化能力存在局限,主要表现为"就近泛化"而非人类的"远程泛化"。因此,AI擅长编码等临近泛化任务,但在需要创新思维的远程泛化领域表现较弱。未来AI发展方向包括提升泛化能力和开发专业领域AI。研究表明AI对职业替代率约为11.7%,主要影响是代码类工作而非需要创意的岗位。AI最本质的特点是什么?从哪一个点切入才能更全面、准确、深刻的理解AI?
原创
博文更新于 2025.12.17 ·
868 阅读 ·
25 点赞 ·
0 评论 ·
16 收藏

LangGraph+DuckDB+ReActAgent实战:Excel问答助手开发指南(超详细)从入门到精通,收藏这篇就够了!

在数据分析场景中,Excel 文件是最常见的数据载体之一。但传统的 Excel 数据分析往往需要用户具备一定的技术能力,比如熟悉公式、透视表或者 SQL 查询。能不能让用户用自然语言直接提问,系统自动完成数据分析并给出可视化结果?本文将详细介绍一个基于支持多文件、多 Sheet 的统一分析自动将 Excel 数据映射为数据库表结构根据自然语言问题生成 SQL 查询智能推荐可视化图表类型实时流式返回思考过程和分析结果维度优势易用性自然语言提问,无需学习 SQL灵活性。
原创
博文更新于 2025.12.11 ·
997 阅读 ·
9 点赞 ·
0 评论 ·
20 收藏

彻底搞懂了!基于LangGraph与DeepSeek构建深度研究智能体

简单来说,深度研究智能体(Deep Research Agents)是能够对预设主题进行深入研究的系统。这可能涉及创建研究报告的提纲,该提纲最终将成为系统的输出。将上述提纲拆分为可管理的步骤。对报告的各个部分进行深入研究,这意味着需要推理出提供全面分析所需的数据,并利用网络搜索工具来支持分析。反思研究过程中不同步骤生成的数据,并改进结果。总结检索到的数据,并撰写最终的研究报告。首先,我们需要定义整个系统的状态,该状态将在智能体(Agent)在环境中运行时不断演进,并被系统的不同部分选择性地使用。
原创
博文更新于 2025.12.11 ·
845 阅读 ·
16 点赞 ·
0 评论 ·
12 收藏

智能体长期记忆的解决方案,不只是知识库(保姆级部署教程及测评)

如果你正在做:陪伴类 AI、客服类 AI、垂直行业助手(医疗 / 法律 / 教育)、代码助手数字员工。那么你一定需要一个:可靠、可控、可进化、不会消失的长期记忆系统。MemMachine 做到了,并且已经领先市场“半步”以上。AI 的下半场,不是参数之争,而是记忆之争。真正强大的 Agent,一定是能“了解你、记得你、为你变化”的 Agent。MemMachine 可能就是通向那个未来的一块基石。写在最后案例只是一种思路和方法的传递。更多无限的可能还在路上。每一次的尝试都是向成功迈进的一步。
原创
博文更新于 2025.12.10 ·
924 阅读 ·
8 点赞 ·
0 评论 ·
21 收藏

手把手教你微调Embedding模型,从零基础入门到精通,看这一篇就够了!

开箱即用:封装了完整的微调流程,无需手动实现训练循环自动生成训练数据:使用LLM自动生成问答对,大大降低数据准备成本灵活的模型支持:支持多种Embedding模型(BGE、OpenAI等)完善的评估工具:内置评估函数,方便对比不同模型效果通过本文的实战教程,我们完成了:✅ 从PDF文档自动生成训练数据✅ 使用LlamaIndex微调BGE模型✅ 评估并对比微调前后的效果无需人工标注,LLM自动生成训练数据三步完成微调,代码简洁易懂效果显著提升,检索准确率提升14%+
原创
博文更新于 2025.12.08 ·
868 阅读 ·
11 点赞 ·
0 评论 ·
21 收藏

2025企业级AI_Agent(智能体)价值及应用

本文全面介绍了AI大模型的基础知识、技术原理、应用场景和实战案例。从零开始讲解大模型的发展历程、核心架构和训练方法,逐步深入到模型优化、部署和微调等高级技术。内容兼顾理论与实践,适合编程初学者和有经验的开发者,帮助读者系统掌握AI大模型技术,并能在实际项目中灵活应用。
原创
博文更新于 2025.12.06 ·
814 阅读 ·
23 点赞 ·
0 评论 ·
29 收藏

极速上手!用GPTBots.ai打造企业级AI应用!

了解一个产品,最直观的就是产品相关的文档了。在概述里看了下提炼了下• 企业级 AI Agent 无代码构建平台• 零代码• 快速创建• 企业级安全看看GPTBots.ai 解决了哪些痛点问题。痛点解决方案LLM 幻觉知识库增强 + 引用溯源 + 内容审核缺乏垂直知识RAG 系统 + 多格式知识库 + 持续训练无法处理复杂任务FlowAgent 工作流 + 工具集成 + 多 LLM 协同落地难无代码构建 + 端到端交付 + 快速上线AI 人才不足可视化操作 + 专业支持 + 分钟级上手。
原创
博文更新于 2025.12.06 ·
919 阅读 ·
17 点赞 ·
0 评论 ·
12 收藏

还在为找Prompt抓狂?提示词从零基础入门到精通,一篇搞定所有知识点!

YPrompt是一个为AI应用设计的提示词管理系统。它不像那些只是展示提示词的图库,也不是一个简单的AI提词工具。它更像一个提示词专用的GitHub,把提示词当作代码一样来管理。它能把散落在各个聊天框里的提示词碎片,系统地整理和迭代。这个工具内置了一个叫GPrompt的方法,可以引导用户写出更好的提示词。它还引入了类似Git的版本管理概念,可以记录每个提示词的修改历史,方便对比不同版本和一键恢复。下面是它的一些界面截图。这是提示词优化的界面。这是版本管理的功能。还有一个提示词的练习场。
原创
博文更新于 2025.12.05 ·
635 阅读 ·
27 点赞 ·
0 评论 ·
10 收藏

智能体AI的六大核心设计模式,从入门到精通,一篇就够了!

本文详细介绍了六种主流AI智能体设计模式:ReAct的推理-行动循环、CodeAct的代码执行范式、Modern Tool Use的轻量级集成、Self-Reflection的自我评估、Multi-Agent的协作方案以及Agentic RAG的检索增强技术。这些模式从不同维度解决了智能体系统核心挑战,开发者可根据需求选择合适架构,构建更强大可靠的AI智能体系统。随着大模型技术的成熟,智能体正在从概念走向实际应用。
原创
博文更新于 2025.12.05 ·
1028 阅读 ·
25 点赞 ·
0 评论 ·
9 收藏

Token到底是个啥?看完这篇终于懂了!

读到这里,Token还神秘吗?其实Token就是AI世界的"信息积木"。大模型通过计算这些积木之间的关系,推测下一个积木应该是哪个,从而生成连贯的文字。为什么大模型生成内容像"打字"?因为它一个Token一个Token地输出为什么API按使用量计费?因为Token数量对应计算成本为什么有时候大模型"卡住"了?可能是在计算下一个Token的概率分布为什么不同语言成本不同?因为Token切分方式导致的消耗差异。
原创
博文更新于 2025.12.04 ·
742 阅读 ·
16 点赞 ·
0 评论 ·
10 收藏

RAG分块策略完全指南(15种实战方案)从零基础到精通,收藏这一篇就够了!

不存在适用于所有数据的“万能分块策略”根据文档格式、使用场景和用户提问方式选择分块方法用真实数据测试,务必检查大模型输出是否存在上下文偏移和幻觉。
原创
博文更新于 2025.12.04 ·
690 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

智能体工程师能拿到 20K以上需要具备的能力

很多人都在问:“现在 AI 行业这么火,我要学点什么,才能拿到 20K+ 的薪资?一句话总结——:微调、Agent、部署。这三块构成了一个合格 AI 应用开发工程师的核心能力,也决定了你在行业里的天花板。
原创
博文更新于 2025.12.02 ·
1932 阅读 ·
51 点赞 ·
0 评论 ·
29 收藏

LangChain与LangGraph从零基础到精通,一篇全掌握,值得收藏!

LangChain与LangGraph是AI智能体开发的两大核心框架。LangChain 1.0作为高层抽象框架,适合简单线性任务、标准RAG系统和快速原型;LangGraph 1.0作为底层运行时引擎,专攻复杂智能体系统、长时间工作流、多智能体协作和人工审核场景。两者形成从概念验证到生产部署的完整闭环,开发者可根据项目需求灵活选择或组合使用,实现AI应用的高效构建与稳定运行。2025年10月22日,LangChain官方团队正式发布了与。
原创
博文更新于 2025.12.02 ·
844 阅读 ·
10 点赞 ·
0 评论 ·
13 收藏
加载更多