IT 老王
码龄10年
求更新 关注
提问 私信
  • 博客:2,081,636
    社区:2
    动态:26
    2,081,664
    总访问量
  • 419
    原创
  • 5,423
    排名
  • 650
    粉丝
  • 262
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
加入CSDN时间: 2015-08-29

个人简介:好记性,不如烂笔头!

博客简介:

滴水石穿

博客描述:
小白成长记录
查看详细资料
个人成就
  • 获得1,732次点赞
  • 内容获得181次评论
  • 获得2,587次收藏
  • 代码片获得5,048次分享
  • 原力等级
    原力等级
    7
    原力分
    3,667
    本月获得
    7
创作历程
  • 123篇
    2025年
  • 103篇
    2024年
  • 51篇
    2023年
  • 72篇
    2022年
  • 60篇
    2021年
  • 104篇
    2020年
  • 208篇
    2019年
  • 42篇
    2018年
  • 40篇
    2017年
  • 64篇
    2016年
  • 2篇
    2015年
成就勋章
TA的专栏
  • python
    20篇
  • AI
    4篇
  • element
    1篇
  • vue
    8篇
  • java
    12篇
  • thinkphp
    12篇
  • 网络安全
    9篇
  • 计算机知识
    3篇
  • tp5
    12篇
  • 微信小程序
    12篇
  • layui
    2篇
  • nodejs
    4篇
  • 服务器
    14篇
  • 安卓
    3篇
  • 调试工具
    2篇
  • uniapp
    1篇
  • jq
    6篇
  • 漏洞bug
    2篇
  • 代码审计
    1篇
  • discuz
    1篇
  • html
    49篇
  • css
    19篇
  • javascript
    96篇
  • asp
    39篇
  • php
    81篇
  • .net
    9篇
  • mysql
    15篇
  • sqlserver
    1篇
  • dedecms
    54篇
  • ecshop
    1篇
  • z-blog
  • windows
    5篇
  • linux
    12篇
  • iis
    5篇
  • apache
    9篇
  • seo
    11篇
  • 浏览器
    5篇
  • 待分类
    2篇
  • DOS
    6篇
  • 网站备案
    8篇
  • dreamwear
    1篇
  • sql
    3篇
  • 面向对象
    3篇
  • 学习经验
    3篇
  • 移动web
    2篇
  • 帝国cms
    25篇
  • destoon
    3篇
  • hack
    1篇
  • dede cms
    11篇
  • phpstudy
    3篇
  • 网站架构
    3篇
  • 网站遇到的问题
    4篇
  • 微信
    9篇
  • http
    3篇
  • vb
    8篇
  • c#
    2篇
  • bootstrap

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 13

TA参与的活动 1

TA的推广
兴趣领域 设置
  • Python
    python
  • 大数据
    mysql
  • 前端
    vue.jslayui
  • 后端
    phplavarel架构
  • 微软技术
    .netasp.net
  • 服务器
    linux
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

python uv常用命令

Python的uv是一款高效包管理工具,提供快速安装、虚拟环境管理和依赖处理功能。支持创建/删除虚拟环境,通过uv pip命令管理包(安装/卸载/升级),兼容requirements.txt和pyproject.toml。特色功能包括项目初始化、依赖同步、构建发布及直接运行脚本。相比传统工具速度更快,同时保留pip兼容性。适用于需要高效管理Python依赖和项目的开发者。
原创
博文更新于 2025.10.30 ·
1353 阅读 ·
17 点赞 ·
0 评论 ·
12 收藏

基于 LLM如何开发智能体?

摘要:基于大语言模型(LLM)开发智能体的核心是利用其自然语言理解与推理能力,构建任务规划、工具调用和记忆管理三大功能模块。通过Prompt工程、函数调用和向量数据库等技术实现智能体对开放场景的自主响应。典型架构包含输入解析、规划、工具调用等模块,形成感知-决策-行动闭环。开发时可选择开源/闭源LLM,结合LangChain等框架快速实现,重点优化Prompt清晰度与工具集成。应用场景覆盖智能助手、内容创作等,需解决幻觉、效率等挑战,未来将向更自主的多模态方向发展。(149字)
原创
博文更新于 2025.10.30 ·
1001 阅读 ·
17 点赞 ·
0 评论 ·
22 收藏

目前智能体开发的常用方法有哪些?

智能体开发方法主要包括三类:传统规则驱动(如状态机、规则推理、博弈论)、学习驱动(强化学习、监督学习、模仿学习)和混合驱动(规则引导学习、模块化架构)。当前趋势是融合规则可靠性与学习适应性,尤其以LLM为核心的新型智能体通过自然语言交互实现多任务适配。方法选择需权衡场景复杂度、数据资源和实时性要求,工业控制偏重规则,动态环境倾向学习,多数实际应用采用混合方案。
原创
博文更新于 2025.10.30 ·
812 阅读 ·
20 点赞 ·
0 评论 ·
11 收藏

python ‘‘‘ ‘‘‘的用法

Python中''' '''是三引号字符串定界符,用于定义多行字符串,功能与""" """相同。主要用途包括:1)编写跨行字符串保留换行格式;2)作为函数/类的文档字符串(docstring);3)嵌套包含单/双引号的字符串避免转义。注意事项:会保留所有格式空格,单独使用时可作为多行注释的替代方案。选择单/双三引号取决于代码风格或嵌套需求。
原创
博文更新于 2025.10.30 ·
356 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

MCP协议的请求结构

摘要: MCP(Model Control Protocol)协议定义了客户端与大模型服务端交互的标准化请求结构,采用JSON格式封装核心模块。请求包含协议元信息(版本号、请求ID)、模型指定(名称/版本)、任务定义(文本生成/翻译/工具调用等多类型)、上下文数据(对话历史)、控制参数(超时/重试)及可选认证信息。任务参数随类型动态变化,支持流式输出、多模态输入等扩展场景,通过结构化设计确保灵活性与兼容性。
原创
博文更新于 2025.10.30 ·
1024 阅读 ·
13 点赞 ·
0 评论 ·
10 收藏

一个简单的大模型应用开发案例如何实现?

本文介绍了基于个人知识库的问答助手开发流程:1)明确项目目标和功能需求;2)构建向量知识库,包括文档加载、切分、向量化处理;3)集成大模型API;4)实现核心问答流程;5)测试优化;6)开发交互界面;7)持续改进用户体验。整个方案采用LangChain框架和Chroma向量数据库,通过大模型处理用户提问,并支持多种文档格式和历史对话功能。
原创
博文更新于 2025.10.24 ·
186 阅读 ·
8 点赞 ·
0 评论 ·
1 收藏

python with 语法

Python的with语句是用于资源管理的语法结构,通过上下文管理器自动处理资源的创建和释放。它简化了文件操作等场景的代码,无需手动关闭资源。开发者可自定义上下文管理器或使用contextlib模块工具,支持多资源管理和异常处理。核心作用是确保资源可靠释放,提升代码健壮性。典型应用包括文件操作、数据库连接和锁管理等。
原创
博文更新于 2025.10.24 ·
219 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

langchan 使用Tool.from_function生成和使用@tool装饰器生成

LangChain提供了两种封装工具的方法:Tool.from_function和@tool装饰器。Tool.from_function需要显式创建Tool对象,适合动态生成工具或批量场景;而@tool装饰器通过函数注解自动生成参数模型,代码更简洁。两者功能相同,区别在于定义方式:装饰器适合静态定义单个工具,Tool.from_function则更灵活,适合动态场景。工具调用方式完全一致,选择取决于具体需求和代码风格偏好。
原创
博文更新于 2025.10.24 ·
280 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

uv run python main.py和python main.py的区别?

uv run python main.py 和 python main.py 的核心区别在于虚拟环境管理方式。前者强制使用当前目录下 uv 管理的虚拟环境(.venv),忽略系统已激活的其他环境;后者直接调用当前激活的 Python 环境(系统全局或手动激活的虚拟环境)。 适用场景: 用 uv run 确保运行环境与 uv 安装的依赖一致 用原生命令则依赖当前环境配置 简言之,uv run 是自动化环境隔离方案,而直接执行依赖手动环境管理。
原创
博文更新于 2025.10.24 ·
700 阅读 ·
20 点赞 ·
0 评论 ·
1 收藏

安装了conda和uv如何创建一个项目?

本文介绍了如何结合 Conda 和 uv 工具高效管理 Python 项目。流程包括:1) 用 Conda 创建隔离的虚拟环境;2) 在环境中安装 uv 工具;3) 使用 uv 初始化项目并管理依赖;4) 开发运行项目。该方法既保证了环境隔离性,又提升了依赖管理效率,适合团队协作。关键步骤都提供了具体命令示例,最后还说明了如何导出和复现项目环境。
原创
博文更新于 2025.10.24 ·
635 阅读 ·
9 点赞 ·
0 评论 ·
8 收藏

什么是AIGC

AIGC(人工智能生成内容)利用AI系统自动创作文字、图像、音频和视频等内容,实现从信息处理到信息创造的跨越。其核心特点是自主完成创作、覆盖多领域内容及高效产出。典型应用包括用ChatGPT生成文本、MidJourney绘制图像、讯飞制作音频,以及Runway生成视频等,显著提升创作效率。
原创
博文更新于 2025.10.24 ·
532 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

python终止后面代码执行用什么

Python中终止代码执行的三种方法对比:1)exit()/quit()适合交互环境但不推荐脚本使用;2)sys.exit()是脚本首选,支持状态码;3)raise SystemExit通过异常机制终止,支持自定义信息。sys.exit()兼容性最佳,正式开发推荐使用,注意避免在函数内随意终止程序。根据场景选择不同方式:交互调试用exit(),脚本开发用sys.exit(),异常处理用SystemExit。(150字)
原创
博文更新于 2025.10.23 ·
533 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

LangChain 中提示词模板的具体语法是什么?

摘要:LangChain提示词模板通过占位符实现动态参数填充,支持两种核心类型:对话式模板(ChatPromptTemplate)用于多角色场景,通过from_messages()定义系统/用户/AI角色;字符串式模板(PromptTemplate)通过from_template()定义单一提示。模板通过format()或链式调用填充参数,支持模板嵌套和动态占位符生成。该语法既保证灵活性,又简化了复杂对话场景的管理,核心是使用{占位符}标记参数,并通过标准化方法进行定义和填充。(150字)
原创
博文更新于 2025.10.23 ·
346 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

Python print(content, end=““)用法

Python的print(content, end="")用于控制输出结尾格式,其中end=""禁止自动换行,使后续内容紧接输出。默认end="
"会换行,而设为空字符串可实现连续打印,适用于流式输出或字符串拼接场景。
原创
博文更新于 2025.10.23 ·
374 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

uv add openai 和 uv pip install openai 的区别

uv add openai和uv pip install openai的主要区别在于:uv add是原生依赖管理命令,会自动更新项目配置文件(如pyproject.toml),适合规范化的项目开发;而uv pip install是对pip的封装,仅安装包不更新配置,适合临时安装或兼容pip场景。前者遵循版本约束,后者默认安装最新版。建议项目开发使用uv add,临时需求使用uv pip install。
原创
博文更新于 2025.10.23 ·
432 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

uv如何配置阿里云源在 pyproject.toml 中 或在 uv.toml 中

摘要: uv支持在uv.toml(全局/项目级)或pyproject.toml(项目级)中配置阿里云源。uv.toml全局配置对所有项目生效,项目级配置优先级更高;pyproject.toml仅对当前项目生效且优先级最高。推荐场景:统一源用全局uv.toml,团队协作项目用pyproject.toml。两者配置格式均为指定registry.index为阿里云地址。是否需要生成完整模板?
原创
博文更新于 2025.10.23 ·
981 阅读 ·
10 点赞 ·
0 评论 ·
5 收藏

conda 下安装的uv在哪个目录下?

摘要:在Conda环境中,uv的安装路径因环境类型而异:命名虚拟环境位于<conda目录>/envs/<env名>/Scripts(Windows)或bin(Linux/macOS);路径式环境直接位于指定路径的Scripts或bin下;base环境则在<conda目录>/Scripts或bin中。可通过where uv(Windows)或which uv(Linux/macOS)命令查询具体路径。
原创
博文更新于 2025.10.23 ·
508 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

conda创建在指定目录创建项目

本文介绍了在Conda中创建和管理指定目录虚拟环境的方法。通过conda create -p命令可自定义环境路径,支持绝对/相对路径和Python版本指定。创建后需使用完整路径激活环境,通过conda env list查看所有环境,conda remove -p删除指定环境。这种方法突破了默认envs目录限制,实现了环境路径的灵活配置。全文以简明命令示例为主,便于用户快速掌握关键操作步骤。
原创
博文更新于 2025.10.23 ·
564 阅读 ·
5 点赞 ·
0 评论 ·
11 收藏

composer安装 laravel 指定版本

摘要:使用Composer安装指定版本Laravel框架,格式为composer create-project laravel/laravel=^版本号 项目名。示例:安装Laravel 8.x最新版用^8.0,9.0稳定版直接写9.0,10.x用^10.0。支持模糊匹配(如8.*)或精确版本(如9.1.0)。需确保Composer版本兼容(建议2.0+),失败时可先运行composer self-update更新。命令执行后将自动下载框架并创建项目目录。(150字)
原创
博文更新于 2025.10.20 ·
516 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

如何训练自己的机器学习模型

机器学习模型训练流程主要包括:1.明确问题类型与评估指标;2.数据收集、清洗与预处理(占70%工作量);3.选择合适模型进行训练;4.评估优化(调参/防过拟合);5.部署监控。关键点包括:数据质量决定上限、简单模型优先、持续迭代优化。建议使用Scikit-learn/PyTorch等工具,从分类/回归等基础任务入手实践。
原创
博文更新于 2025.09.16 ·
904 阅读 ·
16 点赞 ·
0 评论 ·
13 收藏
加载更多