个人成就
-
优质创作者: 人工智能、数据科学与机器学习技术领域
-
获得349,874次点赞
-
内容获得702次评论
-
获得374,198次收藏
-
代码片获得15,032次分享
-
TA的专栏
-
榛樿鍒嗙被 1071篇 -
默认分类 10503篇 -
MLM 3709篇 -
网赚 33篇 -
资源分享 33篇 -
人工智能 579篇 -
pandas 164篇 -
财富 2篇 -
技术分享 3篇 -
SRE 5篇 -
yolov8 45篇 -
VKDoc 2045篇 -
计算机视觉 19篇 -
FreeLearning 2681篇 -
深度学习 113篇 -
transformers 310篇 -
123 -
sympy 61篇 -
scipy 81篇 -
numba 6篇 -
cython 5篇 -
mnumpy 1篇 -
mysql 138篇 -
pdf 14篇 -
quant 68篇 -
安全 46篇 -
区块链 53篇 -
kali 1篇 -
算法 4篇 -
数据分析 7篇 -
系统设计 3篇 -
TypeScript 3篇 -
自媒体 1篇 -
操作系统 1篇 -
devops 8篇 -
技术评论 16篇 -
文档自动化 13篇 -
创业课堂 4篇 -
Go 3篇 -
chatgpt 1篇 -
opencv 41篇 -
灵性科学 8篇 -
神秘学 2篇 -
pko 8篇 -
cs 1篇 -
编程 1篇 -
web 1篇 -
util 1篇 -
dotnet 1篇 -
数据库 3篇 -
basicgames 2篇 -
翻译 6篇 -
succinctly 3篇 -
geeksforgeeks 1篇 -
架构 2篇 -
两性 1篇 -
笔记 1篇 -
网络安全 1篇 -
C# 1篇 -
jQuery 1篇 -
React 1篇 -
Vue 1篇 -
Angular 1篇 -
ASP.NET 1篇 -
NodeJS 1篇 -
Golang 1篇 -
其他 2篇 -
tensorflow 16篇 -
pytorch 1篇 -
Matplotlib 3篇 -
zetcode 15篇 -
beginnersbook 13篇 -
django 82篇 -
csapp labs 5篇 -
c++ 25篇 -
java 82篇 -
c#/.net 4篇 -
资料整理 30篇 -
javascript 40篇 -
php 9篇 -
溢出 33篇 -
渗透 176篇 -
android 28篇 -
python 290篇 -
numpy 150篇 -
逆向 21篇 -
theano 19篇 -
机器学习 162篇 -
数据科学 108篇 -
Linux 6篇 -
数据结构 18篇 -
面试 2篇 -
其它 11篇 -
商业 4篇 -
TF_HOWTO 10篇 -
ApacheCN 228篇 -
大数据 36篇 -
环材化生劝退 44篇 -
生产力观察 12篇
TA关注的专栏 9
TA关注的收藏夹 0
TA关注的社区 12
TA参与的活动 5
关于我
创作活动更多

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨
31人参与 去参加
- 最近
- 文章
- 专栏
- 代码仓
- 资源
- 收藏
- 关注/订阅/互动
更多


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频

搜索 取消
原文:towardsdatascience.com/how-id-learn-machine-learning-again-after-6-years-16847fb2b72c到这个月为止,我在机器学习领域已经积累了 6 年的经验。我第一次接触机器学习是经典的机器学习(想想支持向量机、k-means)。当时,我觉得这个话题相当无聊:理论太多,用不了它来构建任何东西。但随着我上了越来越多的机器学习课程,这种看法发生了改变。由在上的照片我记得当时坐在自然语言处理(NLP)与神经网络相关的讲座中。























