绝不原创的飞龙
码龄14年
求更新 关注
提问 私信
  • 博客:77,150,728
    社区:6,926
    问答:8,904
    77,166,558
    总访问量
  • 22,910
    原创
  • 1
    排名
  • 48,797
    粉丝
  • 171
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2012-02-15
博客简介:

龙哥盟

博客描述:
掠夺·扩张·投机·博弈
查看详细资料
个人成就
  • 优质创作者: 人工智能、数据科学与机器学习技术领域
  • 获得349,874次点赞
  • 内容获得702次评论
  • 获得374,198次收藏
  • 代码片获得15,032次分享
  • 原力等级
    原力等级
    9
    原力分
    10,998
    本月获得
    325
创作历程
  • 8504篇
    2025年
  • 13586篇
    2024年
  • 290篇
    2023年
  • 106篇
    2022年
  • 50篇
    2021年
  • 61篇
    2020年
  • 343篇
    2019年
  • 249篇
    2018年
  • 292篇
    2017年
  • 131篇
    2016年
  • 107篇
    2015年
  • 42篇
    2014年
  • 11篇
    2013年
成就勋章
  • 入选《大数据领域内容榜》第5名
TA的专栏
  • 榛樿鍒嗙被
    1071篇
  • 默认分类
    10503篇
  • MLM
    3709篇
  • 网赚
    33篇
  • 资源分享
    33篇
  • 人工智能
    579篇
  • pandas
    164篇
  • 财富
    2篇
  • 技术分享
    3篇
  • SRE
    5篇
  • yolov8
    45篇
  • VKDoc
    2045篇
  • 计算机视觉
    19篇
  • FreeLearning
    2681篇
  • 深度学习
    113篇
  • transformers
    310篇
  • 123
  • sympy
    61篇
  • scipy
    81篇
  • numba
    6篇
  • cython
    5篇
  • mnumpy
    1篇
  • mysql
    138篇
  • pdf
    14篇
  • quant
    68篇
  • 安全
    46篇
  • 区块链
    53篇
  • kali
    1篇
  • 算法
    4篇
  • 数据分析
    7篇
  • 系统设计
    3篇
  • TypeScript
    3篇
  • 自媒体
    1篇
  • 操作系统
    1篇
  • devops
    8篇
  • 技术评论
    16篇
  • 文档自动化
    13篇
  • 创业课堂
    4篇
  • Go
    3篇
  • chatgpt
    1篇
  • opencv
    41篇
  • 灵性科学
    8篇
  • 神秘学
    2篇
  • pko
    8篇
  • cs
    1篇
  • 编程
    1篇
  • web
    1篇
  • util
    1篇
  • dotnet
    1篇
  • 数据库
    3篇
  • basicgames
    2篇
  • 翻译
    6篇
  • succinctly
    3篇
  • geeksforgeeks
    1篇
  • 架构
    2篇
  • 两性
    1篇
  • 笔记
    1篇
  • 网络安全
    1篇
  • C#
    1篇
  • jQuery
    1篇
  • React
    1篇
  • Vue
    1篇
  • Angular
    1篇
  • ASP.NET
    1篇
  • NodeJS
    1篇
  • Golang
    1篇
  • 其他
    2篇
  • tensorflow
    16篇
  • pytorch
    1篇
  • Matplotlib
    3篇
  • zetcode
    15篇
  • beginnersbook
    13篇
  • django
    82篇
  • csapp labs
    5篇
  • c++
    25篇
  • java
    82篇
  • c#/.net
    4篇
  • 资料整理
    30篇
  • javascript
    40篇
  • php
    9篇
  • 溢出
    33篇
  • 渗透
    176篇
  • android
    28篇
  • python
    290篇
  • numpy
    150篇
  • 逆向
    21篇
  • theano
    19篇
  • 机器学习
    162篇
  • 数据科学
    108篇
  • Linux
    6篇
  • 数据结构
    18篇
  • 面试
    2篇
  • 其它
    11篇
  • 商业
    4篇
  • TF_HOWTO
    10篇
  • ApacheCN
    228篇
  • 大数据
    36篇
  • 环材化生劝退
    44篇
  • 生产力观察
    12篇

TA关注的专栏 9

TA关注的收藏夹 0

TA关注的社区 12

TA参与的活动 5

关于我

Github:@wizardforcel

简书:@布客飞龙

微博:@布客飞龙

BILIBILI:@绝不原创的飞龙


赞助我:

20200112005920729.png

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

31人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

6 年后,我再次学习机器学习的方法

原文:towardsdatascience.com/how-id-learn-machine-learning-again-after-6-years-16847fb2b72c到这个月为止,我在机器学习领域已经积累了 6 年的经验。我第一次接触机器学习是经典的机器学习(想想支持向量机、k-means)。当时,我觉得这个话题相当无聊:理论太多,用不了它来构建任何东西。但随着我上了越来越多的机器学习课程,这种看法发生了改变。由在上的照片我记得当时坐在自然语言处理(NLP)与神经网络相关的讲座中。
原创
博文更新于 2 小时前 ·
693 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

学习 AI 的路线图

自 2022 年 ChatGPT 发布以来,围绕 AI 的炒作已经很多。然而,AI 作为一个概念已经存在很长时间了,其当前形式可以追溯到 20 世纪 50 年代,当时神经网络诞生了。最近的热潮可以归因于许多因素,例如计算资源的增加、更多可用数据和更有效的算法。无论原因如何,AI 都将持续存在,我们应该习惯与它一起工作。目前我们所指的 AI 特指生成式 AI(GenAI),实际上它只是整个 AI 生态系统中的一个相当小的子集,如下所示。图片由作者提供。
原创
博文更新于 2 小时前 ·
380 阅读 ·
11 点赞 ·
0 评论 ·
7 收藏

《两周内学习 LLM:全面路线图》

我对我的存储库和分享我的学习路径所获得的社区支持感到震惊。我将继续学习更多主题,全模型、ViT、GNN、量子机器学习等都在我的清单上。所以不要错过**我的 X 帖子**,我在那里分享了我笔记的摘要。此外,我的 GitHub 存储库ml-retreatGitHub – hesamsheikh/ml-retreat: 中级到高级的 AI 学习路径如果您有兴趣进一步阅读,以下是我的建议 😃关于机器学习我们仍然不理解的内容在编程中使用 AI 的更智能的方式由 Midjourney 创建的图片。
原创
博文更新于 2 小时前 ·
424 阅读 ·
6 点赞 ·
0 评论 ·
11 收藏

如何作为一个数据科学家保持对 AI 的更新

成为数据科学家意味着持续学习,因此保持与所有最新进展和工具同步,以保持你的技术栈敏锐是非常重要的。跟上所有事情是非常困难的,但你不必这么做。仅仅对整个领域的概览就足够了,而我在这篇文章中讨论的方法将能够实现这一点。
原创
博文更新于 2 小时前 ·
292 阅读 ·
12 点赞 ·
0 评论 ·
13 收藏

我是如何在两周内(从零开始)学习 SQL 的

原文:towardsdatascience.com/how-i-learned-sql-in-2-weeks-from-scratch-b78040f4e2c1由在拍摄的照片你想学习 SQL 吗?好吧,在这篇文章中,我将概述我是如何在两周内学习 SQL 的,这帮助我获得了我的第一份入门级数据科学职位。让我们开始吧!
原创
博文更新于 2 小时前 ·
400 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

我是如何使用 Streamlit 为我的学生创建一个类似 Kaggle 的平台,以及你如何也能做到

原文:towardsdatascience.com/how-i-created-a-kaggle-like-platform-for-my-students-using-streamlit-and-how-you-can-do-it-as-well-5fd10671f559排名和积分可以成为极大的激励来源(图由 DALLE-3 创建)我热爱 Kaggle,并相信它在传播数据科学和机器学习方面的贡献是无价的。
原创
博文更新于 2 小时前 ·
365 阅读 ·
11 点赞 ·
0 评论 ·
8 收藏

如果我必须从头开始,我将如何成为一名数据科学家

原文:towardsdatascience.com/how-id-become-a-data-scientist-if-i-had-to-start-over-d966a9de12c2由在上的照片我已经作为一名数据科学家工作了近三年,在这篇文章中,我想分解如果我从零开始重新学习数据科学,我会遵循的路线图,从你需要知道的知识到如何找到你的第一份工作。
原创
博文更新于 9 小时前 ·
627 阅读 ·
7 点赞 ·
0 评论 ·
16 收藏

2024 年我将如何从头开始学习 Python

Python 无疑是最受欢迎的语言之一,它开辟了如此多的不同职业道路,绝对值得学习。在这篇文章中,我们解释了你可以遵循的从零开始学习 Python 的逐步过程。第一步: 选择一个入门级课程第二步: 在 Hacker Rank 或 LeetCode 等平台上持续练习第三步: 在你想要进入的领域做一个项目现在,我并不是说这些步骤会立刻让你找到你的梦想工作,但它们会快速教会你 Python,并让你能够快速迭代你的学习成果。就像所有事情一样,这需要努力工作,有时你可能会发现自己头撞南墙,但最终这将是值得的!
原创
博文更新于 9 小时前 ·
307 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

如何赢得一场价值 10,000 美元的写作比赛

原文:towardsdatascience.com/how-i-won-a-10-000-essay-writing-contest-e0a77e26c765?
原创
博文更新于 9 小时前 ·
295 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

我如何作为数据工程师使用 Gen AI

在这篇简短的文章中,我们介绍了数据团队可以在其组织中快速测试数据和人工智能产品的四种方法:特征工程非结构化数据网络爬取优化业务流程这些数据产品成功到什么程度将严重依赖于组织现有的流程。如果业务利益相关者和数据团队之间没有现有关系,那么在组织中释放生成式人工智能不太可能奏效。数据团队需要成为内部倡导者、冠军,并且像初创公司向世界展示自己一样向业务的其他成员展示自己。其他例子,如特征工程,可能影响非常小。在表格中增加一列,清晰简洁地总结所有其他列的内容,不太可能“推动指针”在任何方面。
原创
博文更新于 9 小时前 ·
474 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

如何作为数据科学家使用 ChatGPT

使用 ChatGPT 提高了我在许多方面的生产力,例如学习新事物、编写单元测试、进行分析和重构代码。我希望这篇文章能给你一些在你自己的工作领域尝试的想法。虽然我认为它不会取代我们,但它是一个强大的工具,你应该尽可能将其集成到你的工作流程中。
原创
博文更新于 9 小时前 ·
609 阅读 ·
6 点赞 ·
0 评论 ·
13 收藏

我是如何将 IPL 数据转化为令人着迷的条形图竞赛

原文:towardsdatascience.com/how-i-turned-ipl-stats-into-a-mesmerizing-bar-chart-race-9ba48084b0c0?
原创
博文更新于 9 小时前 ·
414 阅读 ·
13 点赞 ·
0 评论 ·
13 收藏

我如何使用 LlamaIndex 工作流简化我的研究和演示过程

在这篇文章中,我将展示如何使用 LlamaIndex 工作流简化我的研究过程,帮助我研究某个主题的最新进展,然后将这些研究成果转化为 PowerPoint 演示文稿。当涉及到查找新的研究出版物或论文时,ArXiv.org是我主要的来源。然而,网站上的论文非常多。截至 2024 年 9 月,ArXiv 上大约有 250 万篇论文,其中 17,000 篇是仅在 8 月份提交的(统计数据在这里即使限制在一个特定主题下,要阅读的内容依然非常庞大。但这并不是一个新问题。
原创
博文更新于 10 小时前 ·
579 阅读 ·
21 点赞 ·
0 评论 ·
16 收藏

我如何自学数据科学

总结来说,这是我学习任何技术主题的主要建议。通过获取您想要深入研究的话题的路线图或课程大纲来开始您的学习之旅。这将给您一个方向和结构感,使您的学习体验更加有指导和高效。找到一个高度评价的课程、视频或其他流行资源。没有“最好的”课程,所以不要试图找到它。通过为您的学习之旅安排专门的时间来承诺它。确保您给予它全神贯注的注意力,让自己完全沉浸在主题中,并专注于您的学习目标。学习“足够多”,并开始通过动手项目和实际应用来实施;这对于像编码和数据科学这样的主题尤为重要。
原创
博文更新于 10 小时前 ·
396 阅读 ·
11 点赞 ·
0 评论 ·
11 收藏

如何在全职工作的同时为一切腾出时间

让我们总结一下主要观点通过添加所有“必须做的事情”如工作、锻炼、健康和社交/人际关系来审计你的日程。这将帮助你确定你的空闲时间。在那些空闲时段选择一两个你想要做或工作的项目,并明确你的目标。利用专注的能力,因为它真的是一个真正的游戏改变者。你可以通过删除社交媒体和远离手机来限制干扰。一次只做一件事,如果可能的话,尽量将所有事情对齐到单一领域。
原创
博文更新于 10 小时前 ·
482 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

我是如何学习编程的(没有计算机科学学位,没有训练营)

编程是一项每年变得越来越重要的技能。如果你在考虑学习它,我保证这将是一项无价的技能。我希望我的经历和建议能成为你今年开始编程之旅时可以借鉴的东西!
原创
博文更新于 10 小时前 ·
503 阅读 ·
13 点赞 ·
0 评论 ·
9 收藏

如何通过两个小习惯提高我的数据科学家工作效率

原文:towardsdatascience.com/how-i-improved-my-productivity-as-a-data-scientist-with-two-small-habits-de09854d553c?
原创
博文更新于 10 小时前 ·
372 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

如何将 Apache Flink、Kafka 和 PostgreSQL Docker 化,实现实时数据流处理

鉴于默认的 Apache Flink Docker 镜像不包括 Python 支持,我为 pyFlink 创建了一个自定义 Docker 镜像。这个自定义镜像确保 Flink 可以运行 Python 作业,并包含与 Kafka 和 PostgreSQL 集成所需的依赖项。用于创建此镜像的 Dockerfile 位于 pyflink 子目录中。基础镜像:我们从官方 Flink 镜像开始。Python 安装:安装了 Python 和 pip,并将 pip 升级到最新版本。依赖管理。
原创
博文更新于 10 小时前 ·
447 阅读 ·
13 点赞 ·
0 评论 ·
16 收藏

我如何应对 AI 初创公司中的幻觉问题

原文:towardsdatascience.com/how-i-deal-with-hallucinations-at-an-ai-startup-9fc4121295cc?
原创
博文更新于 10 小时前 ·
492 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

如何根据 CRISP-DM 生命周期创建数据科学项目

CRISP-DM 代表跨行业数据挖掘标准流程,这是一个对任何希望使用它的人开放的数据挖掘框架。它的第一个版本是由 SPSS、戴姆勒-奔驰和 NCR 创建的。然后,一组公司对其进行开发和演变,形成了 CRISP-DM,如今它是数据科学中最知名和广泛采用的框架之一。该过程包括 6 个阶段,并且是灵活的。它更像是一个活体有机体,你可以在各个阶段之间来回移动,迭代并改进结果。阶段包括:业务理解数据理解数据准备建模评估部署。
原创
博文更新于 10 小时前 ·
364 阅读 ·
14 点赞 ·
0 评论 ·
17 收藏
加载更多