大模型应用开发
码龄5年
求更新 关注
提问 私信
  • 博客:1,467,832
    1,467,832
    总访问量
  • 1,127
    原创
  • 1,089
    排名
  • 7,197
    粉丝
  • 3
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2021-06-10

个人简介:技术达人 | 大模型玩家 | 前大厂技术Leader | 多模态大模型 分享有趣有营养的技术、见闻、经验

博客简介:

weixin_59191169的博客

查看详细资料
个人成就
  • 获得19,394次点赞
  • 内容获得26次评论
  • 获得17,948次收藏
  • 代码片获得2,996次分享
  • 原力等级
    原力等级
    9
    原力分
    7,439
    本月获得
    286
创作历程
  • 612篇
    2025年
  • 419篇
    2024年
  • 98篇
    2023年
成就勋章
TA的专栏
  • 人工智能
    2篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

TA的推广
兴趣领域 设置
  • 数据结构与算法
    算法
  • 人工智能
    人工智能语言模型
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 关注/订阅/互动
  • 收藏
  • 社区
  • 最近

  • 文章

  • 专栏

  • 关注/订阅/互动

  • 收藏

  • 社区

搜索 取消

收藏!35岁程序员转型大模型全攻略:凭技术积淀破局,平稳衔接新赛道

35岁,是程序员职业道路上的一道“分水岭”——传统开发岗位的年龄限制、重复劳动的职业倦怠、技术迭代的焦虑感,让不少人陷入“转型无门、坚守乏力”的困境。而大模型浪潮的席卷,恰好为有多年技术积淀的程序员打开了新天窗:你的编程功底、工程化经验、行业认知,都是转型大模型的核心资本。35岁程序员转型,最忌讳“跟风从零学起”,核心逻辑是“技术迁移+经验复用”。第一步必须先梳理自身核心优势:比如你是后端开发,Docker/K8s、服务部署经验可直接复用;若是数据开发,数据清洗、模型基础能力是天然优势。
原创
博文更新于 12 小时前 ·
664 阅读 ·
17 点赞 ·
0 评论 ·
4 收藏

收藏必备:Agentic RAG实战——从传统RAG到智能体驱动的知识检索革命

文章介绍了Agentic RAG技术,通过引入AI智能体将传统静态检索升级为动态知识编排。相比传统RAG的单步检索,Agentic RAG具备多步迭代推理、自适应检索策略、多源信息融合和复杂任务拆解等优势,解决了传统RAG检索不到合适内容就效果差、知识库外信息无法处理等问题。文章详细阐述了Agentic RAG的核心架构、工作模式,并提供了使用LazyLLM框架搭建系统的实践案例,展示了MCP协议在简化工具集成方面的应用。
原创
博文更新于 13 小时前 ·
625 阅读 ·
12 点赞 ·
0 评论 ·
8 收藏

【收藏】2025年AI必备技能:零代码构建智能体,一篇教程全掌握

本文详细介绍了如何使用Coze平台从零开始构建智能体。以"公众号写作助手"为例,展示了完整的构建流程:从平台注册、确定目标、配置工作流,到文本撰写和图像生成环节的设计,最后进行试运行和发布。Coze平台具有低代码、零代码特性,支持多模态输入和丰富的插件扩展,即使没有编程基础也能轻松构建实用的智能体,适用于多种场景。
原创
博文更新于 13 小时前 ·
435 阅读 ·
8 点赞 ·
0 评论 ·
19 收藏

收藏备用!程序员入门大模型:从0到1的学习全攻略

打开招聘软件不难发现一个趋势:传统开发岗位竞争愈发激烈,但大模型相关岗位却一路“绿灯”——算法工程师、大模型应用开发、Prompt工程师等职位薪资水涨船高,甚至不少公司开出“零基础培训入职”的条件。对程序员来说,现在学大模型,不是“选择题”,而是“生存题”。“我是后端开发,转大模型会不会太难?”“刚入行的小白,能跟上节奏吗?”其实这些顾虑都多余。大模型的学习门槛远低于你想象,尤其是有编程基础的程序员,更是自带优势——你熟悉的代码逻辑、数据结构,都是理解大模型的“垫脚石”。
原创
博文更新于 前天 14:36 ·
754 阅读 ·
8 点赞 ·
0 评论 ·
15 收藏

收藏级干货!2025年AI Agent核心拆解:从技术架构到落地实践,程序员必看

如果要用一句话来概括 AI Agent 的价值:它让我们从“告诉机器怎么做”,变成“告诉机器想要什么”。五大特征:自主决策、持续学习、多模态理解、工具生态、多智能体协作;六大模块:感知、决策、执行、记忆、反馈优化等完整技术架构;四种工作模式:目标导向、事件触发、人机协作、多智能体协同;以及一整套围绕任务分解、自我优化、开发实践、平台生态、行业应用展开的体系。2025 年之后,AI Agent 很可能会像当年的移动应用、云服务一样,逐步从“新鲜概念”变成基础设施。
原创
博文更新于 前天 14:31 ·
520 阅读 ·
15 点赞 ·
0 评论 ·
4 收藏

收藏!RAG技术从入门到落地:大模型时代程序员必学的增强秘籍

对于刚接触大模型的程序员小白来说,是不是常遇到这些头疼问题:调用GPT回答专业问题时频频“一本正经地胡说八道”?想让模型掌握2025年最新技术动态却无从下手?微调大模型的高昂成本让人望而却步?别慌,RAG(检索增强生成)技术正是解决这些痛点的“金钥匙”。本文从技术内核到工程落地,手把手带你吃透RAG,附上实战技巧,新手也能快速上手搭建可用的大模型增强系统。
原创
博文更新于 2025.12.17 ·
510 阅读 ·
16 点赞 ·
0 评论 ·
12 收藏

必藏!2025大模型岗位全景图:7大高薪方向+避坑指南,小白也能轻松入门

2025年,大模型技术进入“普惠化落地”新阶段,不仅大厂持续加码,中小企业也开始批量引入大模型应用,直接带动相关岗位缺口突破百万。某权威招聘数据显示,大模型岗位平均起薪比传统IT岗高42%,其中具备实战经验的资深工程师年薪普遍在80W-150W,成为技术圈公认的“薪资天花板”赛道,无论是刚毕业的小白还是想转型的程序员,都值得重点布局。
原创
博文更新于 2025.12.17 ·
334 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

【必收藏】多模态大模型入门指南:从LLM到MLLM/VLM技术解析与应用场景详解

本文详解多模态大模型体系,包括MLLM、LMM、VLM和LLM的概念与应用。多模态模型能同时处理文本、图像、音频等多种数据,实现人机交互新突破。LLM擅长文本处理,VLM专注视觉任务,MLLM/LMM融合多模态能力,应用于图像描述、视觉问答、内容创作等领域。掌握这些技术对程序员和AI从业者至关重要,是深度学习进阶的关键方向。
原创
博文更新于 2025.12.17 ·
238 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

【进阶收藏】大模型入门后怎么走?从会用到精通的实战提升指南

不少程序员在跟着入门指南跑完第一个大模型项目后,都会陷入新的迷茫:“调用API能做简单应用了,但怎么优化响应速度?”“LoRA微调只听过,实际怎么动手?”“做的项目总觉得很初级,怎么才能达到企业级标准?如果说入门是“看懂规则”,那进阶就是“玩透规则”。大模型领域的核心竞争力,从来不是“会用API”,而是“能解决实际业务问题”——比如让模型响应延迟从3秒降到500毫秒,比如用少量数据就让模型适配医疗场景,比如搭建高可用的大模型服务集群。
原创
博文更新于 2025.12.16 ·
937 阅读 ·
29 点赞 ·
0 评论 ·
10 收藏

【强烈收藏】大模型RAG技术入门到精通:解决AI“幻觉“的终极方案

RAG技术是将信息检索与文本生成相结合的创新技术,通过引入外部知识库提升大模型效果。文章详细介绍了RAG的定义、原理、系统架构和工作流程,从朴素RAG到GraphRAG的发展历程,以及提高答案准确性、实时更新知识等优势。同时分析了检索质量、计算开销等挑战及解决方案,并展望了多模态RAG、自适应检索等未来趋势。最后介绍了宝兰德AI智慧助手内置RAG流程的应用实践。RAG是一种将信息检索与文本生成相结合的技术,旨在通过引入外部知识库来提升生成模型的效果。
原创
博文更新于 2025.12.16 ·
745 阅读 ·
11 点赞 ·
0 评论 ·
11 收藏

速藏!2025年11月大模型更新全景图|程序员必看的工具升级指南

2025年6月推出最新的推理模型。
原创
博文更新于 2025.12.15 ·
1231 阅读 ·
15 点赞 ·
0 评论 ·
27 收藏

必收藏!从小白到达人:一文搞懂MCP、RAG、Agent三大AI核心技术

本文详解AI三大核心技术:MCP作为"万能转换器"统一工具接口;RAG通过检索知识库解决AI"幻觉"问题;Agent能主动理解任务并智能执行。三者协作形成"黄金三角",让AI从被动响应进化为主动助手。掌握这些概念,不仅能跟上AI时代步伐,更能预见未来生活和工作方式的变革。
原创
博文更新于 2025.12.15 ·
820 阅读 ·
16 点赞 ·
0 评论 ·
15 收藏

收藏备用!企业级RAG落地全攻略:从避坑到选型的大模型实践手册

AI驱动决策的浪潮下,企业积累的海量文档、历史数据正成为待激活的“数字金矿”。检索增强生成(RAG)作为打通大模型与企业知识库的核心技术,已成为程序员搭建智能化系统的必学技能。但不少团队在落地时,总会踩上“非结构化数据处理卡壳”“向量检索召回率拉胯”“旧系统集成不了”等坑。本文专为CSDN的程序员与AI小白打造,梳理RAG从避坑、选型到优化的完整路径,附实战技巧与工具对比,上手就能用。企业内部自主研发企业级RAG系统,因其在定制化与控制权上的承诺而显得颇具吸引力。
原创
博文更新于 2025.12.15 ·
572 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

收藏!40岁总监被AI逼到闭麦?这篇让你重新掌控职场

小刘用AI生成方案,我会补充落地细节;年轻人用AI做分析,我会指导他们结合业务场景解读数据。我把自己的角色从"执行者"变成了"领航员",反而比以前更有价值。在CSDN这个技术社区,每天都有新的工具、新的框架出现。AI不是第一个"颠覆者",也不会是最后一个。我们这些"老程序员"不必焦虑,更不用抵触,因为技术的本质是让人更高效地创造价值。40岁又怎样?只要保持学习的热情,把经验和AI结合起来,我们依然能在技术浪潮里站稳脚跟。毕竟,职场拼的不是谁跑得更快,而是谁能走得更远。
原创
博文更新于 2025.12.14 ·
778 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

程序员必备:AI Agent与ReAct框架完全指南,值得收藏学习

其中,相对经典、业界广泛使用的是前两种:Reflection 和 Tool Use,而Planning 和 Multi-agent 属于比较新颖、有前景的方式。如果说智能体是大脑,那么工具就是其与外部世界连接的 ”手和脚“,ReAct 范式框架能够真正解决问题,那么智能体就必须能够调用外部工具。这里我们提供一个网页搜索工具,让智能体能都上网搜索 ”最新的豆包手机“的答案。我们选用 SerpApi, 它通过 API 实现 Google 搜索并提供结构化的搜索结果。
原创
博文更新于 2025.12.14 ·
96 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

收藏!AI大模型落地难?10大实战案例带你搞懂政企如何降本增效

AI大模型的风刮了一年多,但真正轮到自己落地时,却满是困惑:想上车但预算有限,还能玩转大模型吗?投入了算力和人力,怎么确保不是“打水漂”?业务场景五花八门,到底该从哪个环节切入才靠谱?数据合规卡脖子,公有云模型不敢用怎么办?这些问题,不仅是小白程序员在技术选型时的痛点,更是政企团队在AI转型路上的共同“拦路虎”。作为深耕IT服务近30年的全周期服务商,昆仑联通从大模型爆发初期就扎进落地实践,核心目标就是帮客户跳过“技术陷阱”,真正实现从“用AI工具”到“AI驱动业务”的跨越。
原创
博文更新于 2025.12.13 ·
464 阅读 ·
9 点赞 ·
0 评论 ·
12 收藏

【建议收藏】企业AI落地实战:大模型≠Agent≠Workflow,一次讲清楚

大模型是‌具有海量参数(通常在十亿以上)的‌人工智能模型‌,通过海量数据预训练和微调,具备解决通用任务、复杂推理及多模态处理等能力。主流大模型基本都是基于transformer架构设计,它输出结果的准确性跟训练的数据集有关,并且是一种概率分布式答案,大模型的基本运行逻辑,是“语言预测”而非“事实判断”,是一个很强的文科生,习惯被动响应(注:这方面的结论推理可具体去了解LLM的技术原理)。AI Agent(人工智能智能体)是一种能够自主感知环境、理解任务、进行决策和执行操作的智能系统。
原创
博文更新于 2025.12.13 ·
901 阅读 ·
26 点赞 ·
0 评论 ·
22 收藏

收藏!大龄产品经理破局指南:学大模型,抢占AI时代黄金岗位

当下职场,大龄产品经理的晋升与求职之路愈发坎坷。追根溯源,核心矛盾在于传统产品岗位的需求持续收窄,而一批嗅觉敏锐的同行已抢先转型AI产品领域,形成了新的竞争壁垒。对产品人而言,与其在传统赛道内卷,不如主动拥抱变革——向AI方向转型升级,已是刻不容缓的生存策略。最近AI相关岗位的火爆程度,早已突破行业预期。阿里巴巴近期开启的大规模招聘中,开放的3000个岗位里AI相关职位占比直接过半;AI领域明星企业DeepSeek更是抛出,只为争抢顶尖AI人才。这组数据背后,是整个行业对AI人才的迫切渴求。。
原创
博文更新于 2025.12.12 ·
924 阅读 ·
18 点赞 ·
0 评论 ·
19 收藏

【干货收藏】大模型不神秘:10分钟看懂AI如何一个字一个字地“思考“

看到这里,你是不是觉得AI没那么神秘了?它不是什么"黑科技",更不是"有灵魂的生命"——它就是一个通过海量数据训练出来的"超级概率计算器",擅长根据上下文预测下一个词。它能写诗、写代码、做翻译它能分析数据、回答问题、提供建议它甚至能在某些领域超越人类专家接龙游戏 + 概率预测 + 向量分类 + 注意力机制。理解这些原理,不是为了让你变成AI工程师,而是让你在使用这些工具时,心里有底——知道它的能力边界在哪里,知道它为什么会犯错,知道如何更好地"驾驭"它。毕竟,在这个AI狂飙的时代,
原创
博文更新于 2025.12.12 ·
1469 阅读 ·
26 点赞 ·
0 评论 ·
38 收藏

【值得收藏】一文掌握多模态大模型:RAG架构详解与PDF多模态处理实战

在现实世界中,信息从不以单一模态呈现。人类的日常感知依赖于多种模态的协同输入,包括视觉、听觉、语言、触觉等,这些感知共同构成了我们对世界的整体理解。当研究任务或数据涉及多种模态信息时,我们将其称为“多模态问题”(Multimodal Problem)。有效应对这类问题,是推动人工智能系统向类人认知迈进、实现“类人智能”的关键一步。正因如此,多模态大型语言模型(Multimodal Large Language Models,MLLM)应运而生。
原创
博文更新于 2025.12.12 ·
754 阅读 ·
23 点赞 ·
0 评论 ·
15 收藏
加载更多