朝阳区靓仔_James
码龄5年
求更新 关注
提问 私信
  • 博客:1,416,474
    社区:9
    1,416,483
    总访问量
  • 1,099
    原创
  • 1,432
    排名
  • 6,102
    粉丝
  • 30
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2021-05-29
博客简介:

weixin_58753619的博客

查看详细资料
个人成就
  • 获得15,454次点赞
  • 内容获得352次评论
  • 获得18,042次收藏
  • 代码片获得5,780次分享
  • 原力等级
    原力等级
    9
    原力分
    9,255
    本月获得
    288
创作历程
  • 594篇
    2025年
  • 208篇
    2024年
  • 109篇
    2023年
  • 184篇
    2022年
  • 4篇
    2021年
成就勋章
TA的专栏
  • Python
    8篇
  • spring cloud alibaba

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 1

兴趣领域 设置
  • Python
    python
  • 大数据
    redis
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AI Agent高含金量PPT(63页):从实现路径到架构实战,附行业标杆案例,建议收藏!

AI Agent是指具有自主性或半自主性的智能实体,能够利用人工智能技术在数字或物理环境中感知、决策、采取行动并实现目标。与Copilot、聊天机器人等相比,AI Agent能够自主规划和行动,实现用户预设的目标。在去年发布《2024年AI Agent应用最佳实践报告》时,沙丘智库观察到企业对AI Agent技术的应用仍处于初期阶段,关于AI Agent的定义与分类、技术架构、落地路径等都尚未统一,很多应用都处于前期试点阶段,尚未产生明确价值。
原创
博文更新于 15 小时前 ·
563 阅读 ·
17 点赞 ·
0 评论 ·
9 收藏

你的 AI Agent 为什么总“失控”?一文讲透“安全护栏”搭建法,打造100%靠谱智能体!

构建可信 AI Agent:智能体行为偏离的深层危机在人工智能技术快速演进的背景下,AI A gent 已经成为复杂任务的执行主体与人机协作的关键接口。当关键任务被委托给 Agent,我们需要的不是一次性的“准点执行”,而是贯穿输入、推理与行动全流程的“意图理解与约束遵循”能力。近期的安全事件表明,意图误解与约束失守可以在零交互或间接注入条件下触发严重风险:
原创
博文更新于 15 小时前 ·
610 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

建议大家都去飞书上学AI Agent!

**李沐 | 亚马逊首席科学家** - YouTube:Mu Li - 《动手学AI Agent》系列:用PyTorch搭建多Agent协作框架!含工业级任务调度+实时决策代码,Jupyter Notebook全部开源! - 论文精读:逐句解析《AutoGPT》《ReAct》,手撕Agent记忆流与工具调用逻辑,小白也能看懂!
原创
博文更新于 18 小时前 ·
248 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

大厂!RAG知识库问答系统架构搭建(0-1)

本期给大家带来大厂rag知识库系统构建案例参考~
原创
博文更新于 18 小时前 ·
210 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

AI Agent 企业应用 50个落地 案例拆解

【深度拆解】AI Agent赋能传统企业转型:50个智能体应用案例剖析
原创
博文更新于 18 小时前 ·
119 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

重磅!手机智能体Mobile-Agent终极实践,多模态、多端一篇彻底搞定!

大模型从技术到实际应用之间仍存在一定的距离,这一距离正是通过RAG和Agent技术来弥合,这不仅解决了大模型落地的“最后一公里”问题,还为多Agent协同、智能数据治理、金融风控、运维自动化等领域提供了新的解决方案。
原创
博文更新于 18 小时前 ·
1389 阅读 ·
19 点赞 ·
0 评论 ·
31 收藏

ReAct工具调用终极指南!智能体Agent从入门到精通,看这篇就够!

AI智能体是指具备一定自主性、能感知环境并通过智能决策执行特定任务的软件或硬件实体。它结合了人工智能技术(如机器学习、自然语言处理、计算机视觉等),能够独立或协作完成目标。
原创
博文更新于 19 小时前 ·
698 阅读 ·
9 点赞 ·
0 评论 ·
12 收藏

RAG学习全流程,存一下吧很难找全了

最近一年,LLM展示了强大的能力,但是面对幻觉、最新的知识以及复杂任务时往往略显不足。RAG(Retrieval Augmented Generation,检索增强生成)通过集成外部知识库来解决类似问题,取得了很不错的效果。
原创
博文更新于 前天 16:36 ·
346 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

(建议收藏)Agent、Function Calling、MCP、A2A 终极指南!这才是AI大模型的完整拼图!

FunctionCalling 由 OpenA I 在 2023 年 6 月推出,最初在 GPT-3.5 和 GPT-4 模型上实现,它允许大语言模型与外部工具连接,将自然语言转换为 API 调用。这解决了大模型在训练结束,就知识更新停滞的问题。OpenAI 文档中的描述:Function Calling 是特定于大语言模型(LLM)的机制,允许模型调用外部函数或 API,它允许模型生成结构化 JSON 输出,以调用外部系统中预定义的函数或 API。通过调用外部工具和服务。
原创
博文更新于 前天 09:27 ·
625 阅读 ·
15 点赞 ·
0 评论 ·
7 收藏

金融Agent落地终极指南!拆解16个头部企业最佳实践,从方法到实战一篇讲透!

随着大模型技术的快速发展,智能体(AI Agent)正逐渐成为金融科技领域的重要力量。智能体通过自主学习、决策和交互能力,有望重塑金融行业的服务模式和业务流程。
原创
博文更新于 前天 09:23 ·
439 阅读 ·
16 点赞 ·
0 评论 ·
11 收藏

AI Agent架构终极指南:26种核心设计模式一篇讲透,建议收藏!

AI Agent是一种具有自主性或半自主性的智能实体,能够利用人工智能技术在数字或物理环境中感知、决策、采取行动并实现目标。与Copilot、聊天机器人等相比,AI Agent能够自主规划和行动,实现用户预设的目标。伴随着人工智能技术的迭代,AI Agent也经历了多个发展阶段。从2024年开始,基于大模型(主要是指“大语言模型LLM”)的AI Agent正在成为企业落地AI应用/解决方案时的必备功能。
原创
博文更新于 前天 09:21 ·
583 阅读 ·
17 点赞 ·
0 评论 ·
15 收藏

别再被“微调”吓到了!LISA方法超简单,这篇保姆级教程,用大白话给你讲得明明白白!

LISA:高效微调大语言模型的新方法 LISA(Layerwise Importance Sampling)是一种创新的轻量化微调方法,旨在解决大语言模型全参数微调时显存占用过高的问题。研究发现,不同神经网络层的更新强度差异显著,LISA据此提出动态采样策略:每K步随机选择γ个层进行反向传播,其余层冻结。实验表明,7B模型微调时显存从80GB降至30GB,且性能接近全参微调。相比LoRA,LISA不引入额外参数,训练速度更快,在多项任务中表现更优。该方法仅需调整γ和K两个超参数,已集成至SWIFT框架,为资
原创
博文更新于 2025.12.17 ·
304 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

(可复现)基于LangChain+FastAPI的多轮对话Text2SQL Agent,保姆级教程+源码!

本文介绍了一种基于LangChain、OpenAI和PostgreSQL构建高效对话式SQL代理的方法。传统方案存在延迟高、维护难等问题,而新方案通过SQL代理自动生成查询,利用视图简化操作,并添加回调处理原始结果,显著提升性能且降低70%代码复杂度。系统支持自然语言查询(如"列出某作者所有作品"),能保持对话上下文,适用于图书数据库等场景。实现步骤包括环境配置、数据库视图创建、SQL代理初始化和结果回调处理。
原创
博文更新于 2025.12.17 ·
728 阅读 ·
12 点赞 ·
0 评论 ·
19 收藏

手把手教你构建知识图谱!从0到1保姆级教程,附完整案例,小白也能直接上手!

知识图谱是揭示实体间关系的语义网络,包含知识抽取(实体、关系、属性抽取)、实体对齐、知识表示(RDF三元组)、知识融合与更新等核心环节。实体抽取是基础,关系抽取构建网状结构,属性抽取完善实体描述。知识融合解决多源数据冲突,知识推理可挖掘隐含信息。 学习大模型AI分为四个阶段:初阶应用(Prompt工程等)、高阶应用(RAG系统开发)、模型训练(微调技术)、商业闭环(部署与实践)。完整学习路径约2-3个月,涵盖从理论到实战,最终可独立训练垂直领域模型。资料包含思维导图、书籍和实战案例,适合Python/JS开
原创
博文更新于 2025.12.17 ·
428 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

模型大小不重要,记忆才是王道!阿里通义ReMe让8B小模型逆袭,性能暴涨!

摘要: 上海交通大学与阿里通义联合提出ReMe框架,通过动态程序性记忆优化大语言模型智能体的任务泛化能力。ReMe包含经验获取、重用与精炼三阶段,采用多维度蒸馏、自适应检索和效用评估机制,显著提升模型性能。实验表明,配备ReMe的Qwen3-8B在BFCL-V3和AppWorld基准上超越无记忆的Qwen3-14B模型(Pass@4提升7.29%),验证了“记忆扩展效应”——高效记忆系统可替代模型规模增长。ReMe还减少了推理错误24%,增强了智能体的鲁棒性。论文及代码已开源。 (字数:149)
原创
博文更新于 2025.12.17 ·
423 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

手把手教你理解Nature黑科技:LLM如何解放眼科医生?这个叫LAOS的系统,让写病历效率飙升!

上海市第一人民医院、
原创
博文更新于 2025.12.17 ·
427 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

数据不出门,安全又可控!手把手教你用私有数据,训练专属本地知识库!

本文介绍了构建本地知识库并利用私有文件进行训练的完整流程。主要包括:1)数据预处理(支持PDF/Word/TXT等格式);2)文本切分策略(按长度或语义切分);3)向量化与索引构建(可选OpenAI或本地嵌入模型);4)三种训练方案(模型微调、RAG检索增强生成和提示词工程);5)隐私保护措施(本地化部署和数据加密)。文章还提供了完整代码示例,并针对不同需求给出建议:注重隐私选本地方案,资源有限用RAG,追求精度则微调模型。最后强调掌握AI技术的重要性,指出最早掌握AI的人将获得竞争优势。
原创
博文更新于 2025.12.17 ·
513 阅读 ·
21 点赞 ·
0 评论 ·
12 收藏

AI Agent从入门到精通:2025年企业落地全攻略,四大形态深度剖析,选型指南看这篇就够了!

转眼到了2025年年底。如果说2024年是AI Agent(智能体)的“概念元年”,那么2025年无疑是它的“落地大考之年”。作为一名在行业里摸爬滚打的AI解决方案工程师,这一年我接触了非常多的企业Agent 落地场景与应用形态。明显的感受是:企业管理层的关注点正在从“模型强不强”,转向“能不能进流程、接系统、提效率、降风险”。去年大家还在看“哪个模型跑分最高?”,今年CIO们见面第一句话变成了:“这东西能不能进我的ERP?能不能直接帮财务把账做平?
原创
博文更新于 2025.12.17 ·
238 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

告别“顾此失彼”!HyCAM一招搞定大模型多任务适配的“通专”矛盾!

北京航空航天大学等机构联合提出新型大语言模型多任务适配框架HyCAM,通过混合式上下文注意力调制机制实现高效任务适配。该框架在自注意力层内动态调控任务特征,结合共享全参数模块与轻量任务特化模块,并引入动态路由策略,在保留通用知识的同时增强任务相关特征。实验表明,HyCAM在问答、代码生成等任务上平均性能提升3.65%,显著优于现有方法。论文已入选CIKM 2025,代码和数据已开源。
原创
博文更新于 2025.12.17 ·
310 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

手把手教你!从零搭建SpringBoot+RAG的AI应用平台,流程编排+知识库全搞定,这篇保姆级教程直接封神!

本文介绍了一款基于LLM和RAG技术的AIGC应用开发平台,旨在解决企业AI开发痛点。平台具备九大核心功能模块,包括知识库管理、流程编排、多模型支持等,支持文档格式保留和图片渲染。采用Java+Vue3技术栈,适配国内企业生态。通过可视化设计和低代码集成,实现从AI应用到业务系统的无缝对接,帮助开发者快速构建智能解决方案。
原创
博文更新于 2025.12.17 ·
968 阅读 ·
34 点赞 ·
0 评论 ·
21 收藏
加载更多