Kentos(acoustic ver.)
码龄5年
求更新 关注
提问 私信
  • 博客:73,897
    73,897
    总访问量
  • 28
    原创
  • 184
    粉丝
  • 9
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:新加坡
加入CSDN时间: 2021-03-28

个人简介:个人笔记,欢迎交流

博客简介:

weixin_56631477的博客

查看详细资料
个人成就
  • 获得203次点赞
  • 内容获得10次评论
  • 获得455次收藏
  • 代码片获得1,003次分享
  • 博客总排名75,381名
  • 原力等级
    原力等级
    3
    原力分
    355
    本月获得
    0
创作历程
  • 2篇
    2025年
  • 4篇
    2024年
  • 13篇
    2022年
  • 9篇
    2021年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Apache 消息队列分布式架构与原理

本文系统地梳理了消息队列技术体系,涵盖了消息队列的基础知识,Apache MQ 系列产品的架构设计,包括 kafka、rocketmq 和 pulsar 关键功能点的实现原理,以及主流消息队列产品的特性比较与选型建议。本文末尾还添加了常见问题和参考链接两个实用章节,帮助读者快速掌握消息队列技术精髓并应用于实际业务场景。
原创
博文更新于 2025.07.25 ·
1323 阅读 ·
27 点赞 ·
0 评论 ·
17 收藏

云原生 —— K8s 容器编排系统

Kubernetes,也称为K8s,是一个开源的容器编排系统,用于自动部署、扩展和管理容器化应用程序,帮助开发者更高效地跨集群管理应用。本文总结了 k8s 的基础概念和技术架构。
原创
博文更新于 2025.07.25 ·
1133 阅读 ·
7 点赞 ·
0 评论 ·
16 收藏

python统计(二)假设检验

单总体参数的假设检验单总体均值的检验DescrStatsW.ztest_mean() statsmodels.stats.weightstats.DescrStatsW.ztest_mean(value=0,alternative='two-sided') 参数 说明 value 假设的均值 alternative 备择假设的形式,可选值:‘two-sided.
原创
博文更新于 2024.10.04 ·
3447 阅读 ·
4 点赞 ·
4 评论 ·
28 收藏

python数据分析(一):列联分析与方差分析

<此部分理论内容结合统计学教材学习>列联分析1. 收集样本数据产生二维或多维交叉列联表;2. 对两个分类变量的相关性进行检验(假设检验)pandas.crosstab(index,columns,margins,normalize)- margins默认为False不带合计数据- normalize=True频率列联表salary_reform.scv结果为列联表补充的内容列联表的期望分布根据比例求出的各个变量...
原创
博文更新于 2024.10.04 ·
11966 阅读 ·
30 点赞 ·
2 评论 ·
53 收藏

数据归约——主成分分析PCA

人们希望用较少的变量来代替原来较多的变量,这种代替可以反映原来多个变量的大部分信息,这实际上是一种“降维”的思想。一般要求所选主成分的方差总和占全部方差的80%以上,一般来说,主成分的累计方差贡献率达到80%以上的前几个主成分,都可以选作最后的主成分。(6)根据主成分分析模型和主成分载荷,可以得到主成分与原来变量之间的线性组合表达式。:如果第一个主成分不足以代表原来的变量,在考虑选择第二个主成分,依次类推。(3)确定主成分:特征值越大,则对应的特征向量表示的主成分的方差越大。
原创
博文更新于 2024.10.04 ·
2858 阅读 ·
1 点赞 ·
1 评论 ·
13 收藏

哈希表在Python中的实现

什么是Hashing,Hash Table哈希表,HashingMap哈希映射,Hash Function哈希函数?如何在python中实现?如何将hashing的思想在现实生活中或者编程中应用?
原创
博文更新于 2024.08.30 ·
1054 阅读 ·
26 点赞 ·
1 评论 ·
18 收藏

python数据分析——网络爬虫和API

2. 使用BeautifulSoup导航并提取精确信息(位于开始标签和结束标签之间):向URL发送HTTP请求,并从API端点检索数据,其中URL作为参数传入。使用HTTP客户端:一个可以发送和接收HTTP请求的软件应用程序。它包含由标签标记的多层内容,包括开始标签和带有‘/’的结束标签。“style”:层叠样式表(CSS)用于设置HTML页面的样式。它可以用来从外部源(如数据库、Web服务和云存储)提取数据。一个用于从API访问特定资源或功能的URL。它是一种软件组件之间相互交互的方式。
原创
博文更新于 2024.08.29 ·
1429 阅读 ·
13 点赞 ·
0 评论 ·
32 收藏

计量经济学与stata应用(二):内生性问题与工具变量

内生性问题的产生和处理,工具变量IV与两阶段最小二乘回归2SLS
原创
博文更新于 2024.03.10 ·
20440 阅读 ·
31 点赞 ·
1 评论 ·
69 收藏

计量经济学与stata应用(一):异方差与自相关

异方差是指随机扰动项的方差不再是常数,而是依赖于下标,此时高斯-马尔可夫假定下的检验统计量都不成立。自相关是指随机变量与自身(不同时间,也叫滞后)的相关性,主要存在于时间序列数据。
原创
博文更新于 2024.03.02 ·
3534 阅读 ·
30 点赞 ·
0 评论 ·
38 收藏

python实现数据挖掘——分类

ID3算法混淆矩阵
原创
博文更新于 2022.12.05 ·
850 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

python数据挖掘——聚类

(1)任意选择k个对象作为初始的簇中心;(2)根据距离(欧式距离)中心最近原则,将其他对象分配到相应类中;(3) 更新簇的质心,即重新计算每个簇中对象的平均值;(4) 重新分配所有对象,直到质心不再发生变化。
原创
博文更新于 2022.11.30 ·
1797 阅读 ·
2 点赞 ·
0 评论 ·
16 收藏

python统计(一)描述性统计与参数估计

连续型数据的描述pandas.DataFrame.describe()对数值型数据进行描述,包括个数、均值、标准差、最小值、分分位数和最大值import pandas as pddf = pd.read_csv(r'/.../bs_data.csv')df.describe() #首先将数字作为数值型数据处理bs_data.scv也可以用单独的方法描述各个总体的参数(都是DataFrame和Series的自带方法)均值df['身高'].mean()df.mean
原创
博文更新于 2022.05.30 ·
4528 阅读 ·
10 点赞 ·
0 评论 ·
54 收藏

python数据可视化(一)matplotlib

matplotlib的架构体系由下到上分别为后端层,美工层,脚本层(函数层)美工层Artist Layer- 提供了绘制统计图所需的各种组成对象,如标题、直线、刻度标记等对象;所有对象都直接或间接继承自matplotlib.artist.Artist对象,各对象间形成一个树状的结构体系- primitives 表示我们要渲染在画布上的标准的图形对象:Line2D, Rectangle, Text, AxesImage等;- containers 是容纳这些图形对象的地方(Axis, A..
原创
博文更新于 2022.04.10 ·
1520 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Numpy 数组的操作

numpy数组的操作数组的创建 向量的创建和操作数据类型type astype() 数据形状shape数组的运算、索引,赋值、视图view()和拷贝copy()
原创
博文更新于 2022.04.10 ·
488 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

数据可视化(二)pandas和seaborn作图

pandaspandas.DataFrame.plot(kind,x,y,title,figsize,grid)可以通过Series或DataFrame对象调用,本质是对pyplot.plot()的一个包装器kind默认为line折线图,gird默认为False不显示网格例一df = pd.read_csv(r'/.../600000.csv')df['date'] = pd.to_datetime(df['date']) # 转换为时间序列df.set_index('date..
原创
博文更新于 2022.03.28 ·
3637 阅读 ·
6 点赞 ·
0 评论 ·
17 收藏

Pandas库的基本操作(二)

数据抽取字段拆分对字符串类型的处理slice() 函数:实现字符串的切片split() 函数:按分隔符拆分字符串df1 = pd.read_csv(r'/.../str_op2.csv')df1['name'].str.split(n = 1, expand = True) # 默认分隔符为空格 分隔数量为所有 结果为列表 若expand = True则结果为DataFramestr_op2.csv时间型数据列的处理df2 = pd.read_csv(r'/..
原创
博文更新于 2022.03.13 ·
1521 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pandas库的基本操作(一)

数据结构引入模块import pandas as pd序列Series:带标签(索引)的一维数组创建序列d = {'b':1,'a':0,'c':3} # 参数为字典s1 = pd.Series(d) # series是pandas的一个类 实例化方法s2 = pd.Series(d,index = ['b','c','d','a']) # 标签print(s1)b 1a 0c 3dtype: int64print(s2) # NaN: Not
原创
博文更新于 2022.03.13 ·
1810 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

排序算法(一) 选择排序 堆排序 插入排序和希尔排序

选择排序每趟排序在当前待排序序列中选出关键码最小的记录,添加到有序序列中。简单选择排序第 i 趟在n-i+1(i=1,2,3,…,n-1)个记录中选取关键码最小的记录作为有序序列中的第i个记录:⑴ 将整个记录序列划分为有序区和无序区,初始状态有序区为空,无序区含有待排序的所有记录。⑵ 在无序区中选取关键码最小的记录,将它与无序区中的第一个记录交换,使得有序区扩展了一个记录,而无序区减少了一个记录。⑶ 不断重复⑵,直到无序区只剩下一个记录为止。此时所有的记录已经按关键码从小到...
原创
博文更新于 2022.03.05 ·
229 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

有向无环图的拓扑排序 关键路径

拓扑排序:在不违背先决条件的基础上将有向无环图排成线性序列- 排序结果不唯一- 用一维数组Indegree存储各顶点的入度- 采用邻接表与队列bool TopSort(LGraph Graph, Vertex TopOrder[]){ int Indegree[MaxVertexNum], cnt; Vertex V; PtrToAdjVNode W; Queue Q = CreateQueue(Graph->Nv); //初始化Indegr
原创
博文更新于 2022.02.26 ·
1067 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

线性结构——顺序表与链表,循环链表和双向链表

顺序表顺序存储是指在内存中用地址连续的一块存储空间顺序存放线性表的各元素-元素顺序和地址顺序相同(下标能直接反应元素间的关系)元素的物理位置相邻-由一维数组实现(但一维数组不一定是顺序存储结构)顺序存储结构类型定义
原创
博文更新于 2022.01.06 ·
895 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏
加载更多