agi大模型
码龄5年
求更新 关注
提问 私信
  • 博客:1,691,665
    动态:304
    视频:138
    1,692,107
    总访问量
  • 895
    原创
  • 4,915
    粉丝
  • 21
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2020-08-05

个人简介:公众号【程序员小媛】免费分享有趣的知识和学习资料

博客简介:

Java癫疯的博客

查看详细资料
个人成就
  • 获得8,251次点赞
  • 内容获得66次评论
  • 获得10,089次收藏
  • 代码片获得11,471次分享
  • 博客总排名14,559名
  • 原力等级
    原力等级
    9
    原力分
    8,176
    本月获得
    10
创作历程
  • 126篇
    2025年
  • 211篇
    2024年
  • 338篇
    2023年
  • 221篇
    2022年
成就勋章
TA的专栏
  • 大模型
    4篇
  • 人工智能
    2篇
  • 深度学习
    1篇
  • 网络安全
    18篇
  • 计算机技术
    10篇
  • 编程
    122篇
  • 职业与职场
    173篇
  • 程序员
    338篇
  • 信息安全
    4篇
  • 漏洞
    2篇
  • 黑客
    1篇
  • Python爬虫
    97篇
  • 学习
    1篇
  • 数据分析
    27篇
  • Python
    236篇
  • python基础
    104篇
  • 等保
    1篇
  • Python作用
    13篇
  • Python安装
    2篇
  • 代码
    5篇
  • 黑客教程
    2篇
  • python看动漫
    1篇
  • Java

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

TA的推广
兴趣领域 设置
  • Python
    python
  • 编程语言
    python
  • 人工智能
    人工智能
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

16人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

从0到1,彻底搞懂 RAG 分块的艺术(附开源代码)

分块没有一成不变的银弹,它是一门需要根据具体场景不断权衡和实验的艺术。最后,为你总结几条可以直接上手的最佳实践:✅选择 200-800 Token 作为你的起点。✅它在大多数场景下表现最好。✅如果你的文档是 Markdown 或 HTML,别浪费了这些天然的边界。✅构建评测集,大胆尝试不同的分块策略和参数组合,找到最适合你业务的方案。✅当精度遇到瓶颈时,试试句子窗口或父文档检索器,效果拔群。分块是优化 RAG 系统的第一步,也是最关键的一步。
原创
博文更新于 2025.07.31 ·
893 阅读 ·
27 点赞 ·
0 评论 ·
20 收藏

Unsloth微调Qwen3实战:让大模型训练飞起来的神器

以前搞大模型微调真的是一件让人头疼的事情。动不动就要几十G的显存,训练个模型恨不得把电费账单给烧爆了。我记得有次用传统方法微调一个7B的模型,电脑风扇转得跟飞机起飞似的,吵得我邻居都来敲门了。这时候Unsloth就像个救世主一样出现了。它号称能够把微调速度提升2-5倍,内存使用量还能减少80%。刚开始我是不太信的,这年头吹牛的项目太多了。直到我亲自试了一把,才发现这货是真的厉害。
原创
博文更新于 2025.07.31 ·
977 阅读 ·
26 点赞 ·
0 评论 ·
11 收藏

Transformer——Attention怎么实现集中注意力

前面我们了解了Transformer的整体架构,本文章是该系列的第二篇文章,我们一起来看一下Attention怎么发挥作用。在介绍之前,我先介绍一下在衡量向量间的对齐度的作用和。从计算上看,点积是将所有的对齐分量相乘并累加;从几何上看,当向量指向相似方向时,点积为正,如果向量垂直,点积为0,当向量方向相反时则为负数。
原创
博文更新于 2025.07.31 ·
996 阅读 ·
25 点赞 ·
0 评论 ·
12 收藏

Transformer,看这一篇就够了!

Transformer最初是为了解决序列转导或神经机器翻译的问题而开发的,这意味着它们旨在解决将输入序列转换为输出序列的任何任务。这就是为什么他们被称为“Transformer”。
原创
博文更新于 2025.07.31 ·
709 阅读 ·
18 点赞 ·
0 评论 ·
22 收藏

Spring AI + Milvus 实现 RAG 智能问答实战

通过。
原创
博文更新于 2025.07.31 ·
1006 阅读 ·
11 点赞 ·
0 评论 ·
28 收藏

RAG 系统落地的8个常见问题和解决方案

关于什么是 RAG,我有零基础级别科普过,。这篇聚焦落地过程的具体问题及解决方案。
原创
博文更新于 2025.07.31 ·
957 阅读 ·
28 点赞 ·
0 评论 ·
15 收藏

新思路!如何在数据稀缺下构建高质量丰富数据集?

这是最近我经常收到的两个大家对于大模型训练和数据集构建的问题。微调后效果不佳,大概率还是数据集本身质量或者丰富度的问题。而在有限的数据下,如何构造出更丰富的数据集呢?今天我就跟大家来介绍一种数据集增强的新思路,以及如何在 中基于这种思路来构建更丰富的高质量数据集。当前,大模型的训练高度依赖训练数据的规模与质量,但现实往往面临着两大矛盾:字节跳动 Seed 团队最近发表了一篇论文:《》其中提出了一种新的 Massive Genre-Audience(MGA) 方法,通过轻量级框架将现有语料系统重构为多样化变
原创
博文更新于 2025.07.17 ·
1095 阅读 ·
30 点赞 ·
0 评论 ·
9 收藏

学习笔记(大模型应用模式)

近期,在学习人工智能大模型应用模式。大模型无疑是当下最热的词汇,几乎是无大模型,无AI。大家经常用的Deepseek、ChatGPT也都属于大模型范畴。这里不探究大模型技术体系,重点谈谈大模型的几种常见应用模式。这是最简单的模式,大模型“开场白”——从【说一句,回一句】开始。你输入一句话,它生成一句回答;你继续问,它继续答。让模型能够请求执行“具体动作”——比如读取数据库、访问第三方接口、调动系统命令等。
原创
博文更新于 2025.07.17 ·
999 阅读 ·
14 点赞 ·
0 评论 ·
20 收藏

一文详解大模型微调与部署原理和方法(含整个流程&2个项目)

最后一公里的核心技术。预训练模型虽具备通用能力,却缺乏垂直领域知识(如医疗/法律)和任务特异性(如客服话术/财报生成)。微调通过轻量级参数调整,将千亿级模型低成本适配到企业场景,实现“”的融合。具体来讲,为什么需要微调?(1):预训练模型可能不擅长专业任务(如医疗诊断、法律分析)。(2):让模型掌握特定领域术语(如金融、生物医药)。(3):根据用户偏好调整输出风格(如正式/简洁/幽默)。
原创
博文更新于 2025.07.17 ·
790 阅读 ·
23 点赞 ·
0 评论 ·
14 收藏

一篇Graph+AI Agents最新技术综述

最近出了一篇关于图()与人工智能代理()结合的综述性研究,提出了一个分类框架来组织这一领域的研究进展,详细讨论了图技术在AI代理的核心功能中的作用。Graph与AI Agents相结合的总体示意图。
原创
博文更新于 2025.07.17 ·
1027 阅读 ·
24 点赞 ·
0 评论 ·
18 收藏

云计算技术架构详解(4大核心技术)

云计算通常分为三大类:基础设施即服务 (IaaS)、平台即服务 (PaaS) 和 软件即服务 (SaaS)。IaaS提供硬件基础,PaaS在IaaS上构建开发平台,SaaS在PaaS或IaaS上提供最终用户应用,层层递进。提供虚拟化的计算资源,如服务器、存储和网络硬件。用户可以按需租用这些基础设施,并自行管理操作系统、应用程序等。比如:AWS EC2、阿里云ECS…这些都是典型的Iaas。
原创
博文更新于 2025.07.17 ·
1124 阅读 ·
13 点赞 ·
0 评论 ·
28 收藏

最全的Ollama使用详解

ollama支持导入Safetensors与GGUF两种格式的本地模型导入,还支持对模型进行量化与自定义提示词。本地开发与测试: 开发者可在个人电脑上离线运行、调试和微调开源大模型(如LLaMA系列、Mistral等),无需依赖云端API,提升效率并保护隐私。私有化部署: 适用于对数据安全要求高的场景(如金融、医疗、企业内部),将模型完全部署在本地服务器或私有云,确保敏感数据不出本地。定制化模型应用: 结合自定义提示模板和参数调整,打造特定领域(客服、写作辅助、代码生成)的专属AI工具。
原创
博文更新于 2025.07.16 ·
1743 阅读 ·
8 点赞 ·
0 评论 ·
22 收藏

大语言模型(LLM)之更好的搜索增强生成(RAG)方案——RAG-Fusion

当然这样利用大模型去进行搜索query改写,虽然能够带来更丰富的搜索信息,但是性能上会受到损失,产品上的设计一定要考虑这一点。
原创
博文更新于 2025.07.16 ·
758 阅读 ·
24 点赞 ·
0 评论 ·
28 收藏

AI Agent&MCP的工程化实践-系列

接下来的半个月到一个月时间,会做一些AI Agent的工程化实践。不同于一些传统demo性质的文章和代码,这里会聚焦一些真正需要思考解决的工程化的问题,项目地址:https://github.com/dubin555/lang_agent。
原创
博文更新于 2025.07.16 ·
720 阅读 ·
19 点赞 ·
0 评论 ·
17 收藏

万字长文深入浅出教你优雅开发复杂AI Agent

AI Agent 的发展正处于爆发前夜,从最初的 LLM 聊天机器人,到具备规划、记忆、工具调用能力的智能体,再到多 Agent 协作的复杂生态,整个行业正在经历一场范式转变。本文系统梳理了 AI Agent 的核心理念、主流协议(MCP、A2A)、思考框架(CoT、ReAct、Plan-and-Execute),并结合 Golang 生态下的 Eino、tRPC-A2A-Go 等工程化框架,结合实际例子详细讲解了如何优雅地开发、编排和观测复杂的智能体系统。
原创
博文更新于 2025.07.16 ·
1021 阅读 ·
27 点赞 ·
0 评论 ·
14 收藏

深入浅出RAG详解:语言模型的“开卷考试”——让模型答案锚定现实的外部“记忆”

理解RAG需要区分其采用的两种记忆类型,这一区别是其强大灵活性的核心。
原创
博文更新于 2025.07.16 ·
798 阅读 ·
21 点赞 ·
0 评论 ·
21 收藏

如何分钟级完成大模型应用开发环境搭建

据投资银行高盛(Goldman Sachs)发布报告,随着 AI 技术的突破,预计全球将有 3 亿个工作岗位被生成式 AI 取代。麦肯锡全球研究院也有共识:到 2030 年全球将有 4 亿个工作岗位受到自动化冲击。如今,普通人的生产力正在被 DeepSeek、Sora 等工具不断重塑,特别是 Cursor 这样的 AI 助手出现以后,即便是完全不懂编程的小白,也仅需通过自然语言描述想法,就能实现 AI 辅助编程、智能代码补全、错误检测与修复、代码优化、插件扩展等多种功能。
原创
博文更新于 2025.05.13 ·
851 阅读 ·
14 点赞 ·
0 评论 ·
13 收藏

从0到1打造一个知识库 AI Agent(智能体)

接下来,我们进入正题,从0到1到打造个人知识库 AI Agent(智能体)。同样,我希望大家看完后,收获最大的是如何打造知识库的思维过程,这些是高价值的知识。这篇文章,分成了三部分接下来,我们开始第一部分的内容:需求分析。首先我们了解一下什么是知识库?接下来,我们对知识库智能体平台进行选型。很多朋友可能会说,有很多的笔记软件平台啊,为啥不用啊,可以用的啊,每个人的选择不一样。这里我们是用大厂的产品自建,安全、免费、功能多,后期扩展性强。
原创
博文更新于 2025.05.13 ·
948 阅读 ·
30 点赞 ·
0 评论 ·
22 收藏

2025年如何学习 AI Agent(智能体)?如何选型? (2)

搭建一个 AI Agent(智能体)用什么平台?用什么技术框架?我的场景如何结合 AI Agent?现在出了这么多平台、框架,我应该学哪个呢?这篇文章,我会围绕上面的问题来讲解。无论你是否是技术人员,相信这篇文章对你都会有所收获。这篇文章内容会包含如下几部分:面对快速发展的 AI 技术,我们应该优先学习什么?如果我没有编程经验,我可以用哪些平台来搭建 AI Agent?对于有编程经验的人,有哪些推荐的 AI 技术路线?
原创
博文更新于 2025.05.13 ·
702 阅读 ·
12 点赞 ·
0 评论 ·
15 收藏

2025版最新大模型算法岗位薪资指南,(非常详细)零基础入门到精通,收藏这一篇就够了

AI大模型应该是当前AI领域最火的方向了。近日看到有些工资爆料,比如下面硕士985,大模型算法工程师,base薪资45K,4万签字费:硕士不是985,但是211,并且还是转码的,毕业还延了一年。现在转码不容易,延毕还能拿到这个薪资,那是更属不易:211选择其他非计算机AI专业,毕业想找到4开头的薪资,现在是很难的。
原创
博文更新于 2025.05.13 ·
2112 阅读 ·
7 点赞 ·
0 评论 ·
20 收藏
加载更多