
Apache ShardingSphere-JDBC
本文摘要: 文章首先介绍了互联网时代下高性能数据库架构的两种主要模式:读写分离和数据库分片。读写分离通过将写操作路由到主库、读操作分散到从库来提升性能,可采用一主多从或多主多从配置。数据库分片则分为垂直分片(按业务拆分)和水平分片(按数据规则分布),以解决海量数据存储问题。 其次,阐述了CAP理论在分布式系统中的核心原则,分析了CP与AP两种实现方式的特点,并指出实践中只能达到最终一致性。
RuoYi
Spring AI Alibaba
SAP ABAP
ShardingSphere
LangChain4j
SpringMVC
RabbitMQ
SpringBoot
AI工程师
SpringSecurity
docker
SpringCloud
自动化部署
Nginx
Vue
ELK
RocketMQ
Redis
Mybatis
Spring
Maven
Git
Linux
SpringBoot3
简单算法
多线程
MySql
IO流
Java 正则表达式 TA关注的专栏 0
TA关注的收藏夹 0
TA关注的社区 1
TA参与的活动 6

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频
