小钟佳运
码龄6年
求更新 关注
提问 私信
  • 博客:1,640,890
    1,640,890
    总访问量
  • 302
    原创
  • 9,848
    排名
  • 19,442
    粉丝
  • 1
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:云南省
加入CSDN时间: 2020-02-20

个人简介:Java是世界上最好的语言

博客简介:

小钟不想敲代码

博客描述:
简单之至则为雅致
查看详细资料
个人成就
  • 优质创作者: Java技术领域
  • 获得1,914次点赞
  • 内容获得64次评论
  • 获得2,633次收藏
  • 代码片获得16,251次分享
  • 原力等级
    原力等级
    7
    原力分
    4,498
    本月获得
    32
创作历程
  • 48篇
    2025年
  • 37篇
    2024年
  • 201篇
    2023年
  • 16篇
    2022年
成就勋章
TA的专栏
  • RuoYi
    付费
    13篇
  • Spring AI Alibaba
    付费
    13篇
  • SAP ABAP
    付费
    5篇
  • ShardingSphere
    1篇
  • LangChain4j
    11篇
  • SpringMVC
    8篇
  • RabbitMQ
    3篇
  • SpringBoot
    31篇
  • AI工程师
    5篇
  • SpringSecurity
    5篇
  • docker
    10篇
  • SpringCloud
    15篇
  • 自动化部署
    3篇
  • Nginx
    4篇
  • Vue
    14篇
  • ELK
    3篇
  • RocketMQ
    4篇
  • Redis
    5篇
  • Mybatis
    9篇
  • Spring
    10篇
  • Maven
    4篇
  • Git
    4篇
  • Linux
    9篇
  • SpringBoot3
    7篇
  • 简单算法
    8篇
  • 多线程
    8篇
  • MySql
    21篇
  • IO流
    9篇
  • Java 正则表达式
    12篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 6

兴趣领域 设置
  • Java
    javamavenintellij-ideaspring bootspring cloudmybatis
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

34人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Apache ShardingSphere-JDBC

本文摘要: 文章首先介绍了互联网时代下高性能数据库架构的两种主要模式:读写分离和数据库分片。读写分离通过将写操作路由到主库、读操作分散到从库来提升性能,可采用一主多从或多主多从配置。数据库分片则分为垂直分片(按业务拆分)和水平分片(按数据规则分布),以解决海量数据存储问题。 其次,阐述了CAP理论在分布式系统中的核心原则,分析了CP与AP两种实现方式的特点,并指出实践中只能达到最终一致性。
原创
博文更新于 2025.11.03 ·
1088 阅读 ·
22 点赞 ·
0 评论 ·
22 收藏

从用户增长到智能拓展:LightGBM 在业务系统中的实战应用

在企业拓展或用户增长系统中,如何预测“哪些客户最可能转化”“哪些用户将会流失”是业务的关键问题。 **LightGBM** 作为高效的梯度提升框架,不仅能快速处理大规模特征数据,还能精准捕捉业务规律。 本文将结合一个 **“用户转化预测” 实战案例**,详细介绍 LightGBM 的原理、参数调优方法,以及在拓展类系统中的落地思路。
原创
博文更新于 2025.10.24 ·
801 阅读 ·
22 点赞 ·
0 评论 ·
16 收藏

RuoYi前后端分离版实现单点登录(对接企业微信)

企业微信第三方登录集成指南 本文介绍了如何在若依系统中集成企业微信第三方登录功能,主要包含两部分内容: 前置条件配置:需要注册企业微信、创建应用并设置授权回调域和可信域名,获取Client ID、Client Secret等关键信息。 代码实现部分: 添加JustAuth依赖 配置安全策略 创建第三方授权表 实现认证授权控制器 包含授权绑定、登录回调等核心接口 系统通过OAuth2.0协议实现企业微信账号与系统账号的绑定和登录功能,支持获取用户基本信息并生成系统访问令牌。
原创
博文更新于 2025.10.15 ·
422 阅读 ·
7 点赞 ·
2 评论 ·
1 收藏

13-SAA生态篇

文章摘要:本文介绍了阿里云百炼平台云上RAG知识库的AI智能运维实现方案。通过Spring Boot项目整合阿里云DashScope API,实现基于RAG(检索增强生成)的知识库问答功能。主要内容包括Maven依赖配置、YAML参数设置、DashScope API的Bean配置、以及核心控制器实现。通过DocumentRetriever进行文档检索,结合ChatClient实现智能问答,支持通过HTTP接口查询错误信息等功能。代码展示了如何构建RAG知识库查询服务,为AI运维提供解决方案。
原创
博文更新于 2025.09.30 ·
311 阅读 ·
13 点赞 ·
0 评论 ·
0 收藏

12-MCP模型上下文协议(Model Context Protocol)

MCP(模型上下文协议)是一种类似于SpringCloud Openfeign的大模型通讯协议,旨在标准化LLMs获取上下文的方式。它通过统一协议解决不同大模型需要为每个工具单独开发接口的问题,简化开发流程。MCP采用客户端-服务器架构,支持STDIO和SSE两种通信模式,使开发者只需实现一次MCP服务端即可供所有兼容MCP协议的模型调用。本地开发MCP-Server包括创建模块、配置依赖、实现业务服务类等步骤,如通过@Tool注解定义天气预报服务。MCP协议让大模型从被动应答变为主动调用工具,提高开发效率
原创
博文更新于 2025.09.30 ·
194 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

11-Tool Calling工具调用

本文介绍了LLM的ToolCalling功能,它允许大模型与外部API或工具交互,增强模型能力。文章通过SpringBoot项目实战演示了如何使用ChatModel实现工具调用: 创建DateTimeTools工具类,定义获取当前时间的方法并标注@Tool注解 在Controller中注册工具到工具集合 配置ChatOptions并构建提示词 调用大模型获取结果 测试接口为http://localhost:8013/toolcall/chat,可查询当前时间。LLM仅指示调用哪个函数而不执行实际调用,通过工
原创
博文更新于 2025.09.30 ·
56 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

10-RAG(Retrieval Augmented Generation)

RAG(检索增强生成)技术通过为AI大模型引入外部知识源,解决了传统LLM知识更新滞后、缺乏私有领域知识和产生幻觉回复等问题。本文以智能运维助手为例,展示了如何基于Spring AI和阿里云DashScope搭建RAG系统。系统通过将错误编码文档存入Redis向量数据库构建知识库,当用户查询时先检索相关知识再生成回答,显著提升了回答准确性。代码实现包括Maven依赖配置、Redis向量数据库初始化、阿里云大模型接入等关键步骤,为AI运维场景提供了实用解决方案。
原创
博文更新于 2025.09.29 ·
99 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

9-向量化和向量数据库

本文介绍了向量化技术和嵌入模型,讨论了如何将文本、图像和视频转换为向量表示。重点讲解了RedisStack作为向量数据库的应用,包括其核心组件(RediSearch、RedisJSON等)和安装方法。通过一个Spring Boot项目示例,展示了如何集成阿里云Dashscope嵌入模型与RedisStack向量存储,实现文本向量化存储和相似性搜索功能。项目配置了相关依赖和YML参数,为开发者提供了实用的向量化应用参考方案。
原创
博文更新于 2025.09.29 ·
197 阅读 ·
7 点赞 ·
0 评论 ·
0 收藏

8-文生图、文生音

本文介绍了两种阿里云AI服务实践:文生图和文生音。在文生图部分,通过Spring Boot项目整合Alibaba Dashscope API,实现了文本转图像功能,包含完整的Maven依赖配置、YAML参数设置和REST接口实现。文生音部分展示了语音合成的基本代码结构,使用Dashscope语音合成模型,通过API将文本转换为语音输出。两套实现均采用标准的Spring Boot开发模式,配置了模型参数和API密钥,并提供了简单的REST接口供前端调用。
原创
博文更新于 2025.09.28 ·
64 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

7-Chat Memory会话记忆和持久化

本文介绍了大模型对话记忆的概念及其实现方法。大模型对话记忆指AI在交互过程中追踪并利用历史对话上下文的能力,实现更连贯自然的对话。由于大模型本身不存储数据,需要通过持久化机制保存对话历史。文章以Spring AI Alibaba框架为例,展示了如何通过Redis实现对话记忆的持久化存储。具体步骤包括:项目配置、Redis连接设置、ChatMemoryRepository接口实现,以及MessageWindowChatMemory消息窗口的应用。代码示例展示了完整的实现方案,包括pom依赖、yml配置和核心业
原创
博文更新于 2025.09.27 ·
344 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

若依前后端分离版集成到企业微信自建应用

本文介绍了如何将若依系统与企微自建应用集成并实现免登录功能。核心思路是通过前端自动登录页面调用后端接口,实现无侵入式集成。文章包含: 业务需求:要求所有用户密码固定,用户名需与企微返回信息对应(如手机号、工号等) 代码实现: 前端路由配置 企微登录页面组件,包含自动登录逻辑 关键功能: 授权码获取(优先从URL参数) 用户信息查询 自动登录流程 错误处理和倒计时跳转 注意事项: 保持原有Spring Security认证框架不变 提供完善的错误处理机制 包含多种跳转方式确保可靠性 该方案适用于需要快速集成企
原创
博文更新于 2025.09.27 ·
584 阅读 ·
21 点赞 ·
0 评论 ·
0 收藏

6-提示词与格式化输出

本文介绍了Prompt(提示词)在AI模型交互中的关键作用,包括其结构、类型和实现方式。主要内容包括: Prompt定义:作为引导AI模型生成特定输出的输入格式,其设计直接影响模型响应质量。 技术架构:从简单的String字符串逐步发展为包含Message对象的Prompt类,支持四种角色消息类型(SYSTEM、USER、ASSISTANT、TOOL)。 代码实现:通过Spring Boot项目展示如何集成Alibaba Dashscope API,配置不同AI模型(如DeepSeek和QWEN),实现基于
原创
博文更新于 2025.09.26 ·
290 阅读 ·
12 点赞 ·
0 评论 ·
0 收藏

5-SSE实现Stream流式输出及多模型共存

流式输出与SSE技术实现AI交互 本文介绍了两种实现大模型流式输出的技术方案。流式输出(StreamingOutput)是一种逐步返回大模型生成结果的技术,能显著提升用户体验,特别适用于响应较慢的场景。文章详细讲解了两种实现方式:通过ChatModel和ChatClient实现流式输出。 同时介绍了SSE(Server-Sent Events)技术,这是一种轻量级的单向通信协议,允许服务端持续推送数据片段到前端。SSE适用于实时通知、状态更新、实时数据流和协作应用等场景,相比WebSocket更简单易用。
原创
博文更新于 2025.09.26 ·
163 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

4-ChatClient

本文介绍了ChatModel与ChatClient的区别及使用实践。ChatModel是底层接口,直接与大模型交互,提供call()和stream()方法;ChatClient是高级封装,基于ChatModel构建,适合快速开发标准化AI服务。文章通过Spring Boot项目实战,演示了两种方式的代码实现:1)使用ChatModel直接调用大模型API;2)通过ChatClient构建更复杂的对话服务。项目包含完整的Maven配置、YAML设置和控制器代码,展示了如何集成阿里云DashScope大模型服务
原创
博文更新于 2025.09.25 ·
177 阅读 ·
7 点赞 ·
0 评论 ·
0 收藏

3-Spring AI Alibaba接入本地大模型

本文介绍了Ollama本地大模型部署及微服务对接方案。首先详细讲解了Ollama的下载安装过程,包括自定义安装路径、设置模型存储目录等步骤,并演示了如何验证安装成功。接着展示了如何通过Spring Boot微服务对接本地大模型,包括创建模块、配置依赖、设置YAML参数以及编写业务控制器代码。文章提供了完整的操作流程和代码示例,帮助开发者快速实现大语言模型的本地部署与集成应用。
原创
博文更新于 2025.09.25 ·
78 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

2-Spring AI Alibaba入门

本文介绍了SpringAI Alibaba与SpringAI、SpringBoot的版本兼容关系,以及如何接入阿里云百炼平台进行大模型开发。主要内容包括:1) 版本依赖关系说明; 2) 阿里云百炼平台API-key、模型名和baseUrl的获取; 3) 使用IDEA创建Maven父工程进行依赖管理; 4) 创建子模块并配置pom.xml引入spring-ai-alibaba相关依赖。整体方案基于OpenAI协议标准实现多模型切换,提供高度可扩展的开发支持。
原创
博文更新于 2025.09.24 ·
336 阅读 ·
7 点赞 ·
0 评论 ·
0 收藏

1-Spring AI Alibaba之理论概述

摘要(149字): Spring AI Alibaba(SAA)是基于Spring AI构建的Java AI框架,深度集成阿里云百炼平台,打通微服务与AI模型的连接。它继承Spring AI核心能力并扩展支持阿里云生态,提供多模态模型、向量数据库、RAG等组件,具备企业级特性如Nacos配置管理、ARMS监控、工作流支持。相比Spring AI和LangChain4J,SAA在阿里云集成度、企业功能(智能体管理、评测工具)和中文支持上更突出,适合复杂业务场景。三大框架中,Spring AI轻量通用,Lang
原创
博文更新于 2025.09.24 ·
127 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

11-MCP(模型上下文协议Model​ Context Protocol)

MCP(Model Context Protocol)是AI领域的标准化协议,类似于JDBC在数据库中的作用。它统一了大模型调用外部工具的方式,开发者无需重复编写胶水代码,工具也能跨项目复用。MCP采用客户端-服务器架构,包含主机、客户端、服务器及本地/远程资源,支持STDIO和SSE两种通信模式。文章通过百度地图API接入示例,展示了MCP的实际应用,包括环境配置、模块创建和代码实现。MCP协议极大提升了AI工具集成的效率和通用性。
原创
博文更新于 2025.09.19 ·
2177 阅读 ·
48 点赞 ·
0 评论 ·
48 收藏

10-检索增强生成RAG

本文介绍了RAG(检索增强生成)技术及其在LangChain4j中的实现。RAG通过为AI模型提供实时检索能力,解决了传统模型的知识遗忘和幻觉问题。文章详细说明了RAG的两个阶段(索引和检索)以及使用LangChain4j构建RAG的7个步骤,包括文档加载、转换、拆分、嵌入、存储、检索和响应生成。同时提供了一个基于Spring Boot和LangChain4j的代码实例,展示了如何配置聊天模型和内存嵌入存储,实现智能问答系统的自维护功能。
原创
博文更新于 2025.09.19 ·
895 阅读 ·
30 点赞 ·
0 评论 ·
7 收藏

7-提示词工程

提示词工程
原创
博文更新于 2025.09.18 ·
690 阅读 ·
8 点赞 ·
0 评论 ·
15 收藏
加载更多