来自于狂人
码龄6年
求更新 关注
提问 私信
  • 博客:275,145
    275,145
    总访问量
  • 214
    原创
  • 9,139
    排名
  • 6,122
    粉丝
  • 29
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
目前就职: 中国联通
加入CSDN时间: 2019-09-10

个人简介:提供最高性价比云服务器资源咨询,可私信了解

博客简介:

weixin_45631123的博客

查看详细资料
个人成就
  • 获得3,018次点赞
  • 内容获得43次评论
  • 获得2,504次收藏
  • 代码片获得5,426次分享
  • 原力等级
    原力等级
    6
    原力分
    2,326
    本月获得
    82
创作历程
  • 154篇
    2025年
  • 57篇
    2024年
  • 3篇
    2023年
成就勋章
TA的专栏
  • Openstack
    29篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 1

兴趣领域 设置
  • 云原生
    容器kubernetes云原生
  • 操作系统
    linux
  • 网络空间安全
    网络安全安全系统安全web安全网络攻击模型ddos安全威胁分析
  • AIGC
    chatgptAI编程gpu算力
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

33人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

HCIE云计算考点精析

当CoreDNS策略为时,所有DNS查询必须经过CoreDNS。如果CoreDNS未正确配置上游DNS(如VPC内网DNS),则对非集群域名的解析将失败。这正是本题“ECS能解析,CCE不能”的根本原因。策略的流量路径CoreDNS的上游转发机制分层故障排查方法终极记忆要点“ClusterFirst是双刃剑,转发失效全瘫痪;内网域名查不了,八成CoreDNS没配好;HCIE考架构深,细节决定成败局。选项B(南向管理员)不属于华为云Stack的运维角色“南向”是技术接口术语,不是角色名称。
原创
博文更新于 12 小时前 ·
487 阅读 ·
5 点赞 ·
0 评论 ·
19 收藏

HCIE云计算考点精析

Kubernetes不会自动检测应用逻辑错误并触发回滚。它只能根据声明的状态进行调和,而“版本是否有问题”属于业务层面的判断,必须由监控系统、CI/CD流程或人工决策触发回滚操作。Kubernetes的自动化边界:控制平面 vs 业务逻辑回滚的本质:是API能力,不是智能决策生产级发布架构:K8s + 监控 + CI/CD 的协同设计终极记忆要点“K8s能扩缩能负载,发现服务也自动;版本出错不自纠,回滚还需人或机;自动二字要谨慎,HCIE考题辨真伪。当CoreDNS策略为。
原创
博文更新于 13 小时前 ·
672 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

1分钟克隆任意音色,还能免费商用:这个AI工具,把配音成本打回0元

OpenVoice的开发团队,是MIT的Zengyi Qin+清华大学的Wenliang Zhao、Xumin Yu,再加上Myshell的工程师——学术+工业双重背书,不是那种“小作坊”工具。而且它基于TTS、VITS等成熟的语音模型开发,稳定性拉满;甚至连论文都发在了arXiv上(论文名《OpenVoice: Versatile Instant Voice Cloning》),专业度直接拉满。
原创
博文更新于 23 小时前 ·
695 阅读 ·
45 点赞 ·
0 评论 ·
19 收藏

爆款github项目,让量子计算离你只差一行Python代码

5年前还只存在于实验室论文里的,现在只需要打开Python编辑器,敲一行,就能直接用来训练AI模型、模拟分子结构——甚至不用你懂半个量子力学公式。。它不是某台价值上亿的量子计算机,而是一个轻量的Python库;但它干的事,相当于把“量子计算的能力”打包成了开发者熟悉的API,让你用PyTorch写的代码,能直接调用IBM、亚马逊的量子硬件,甚至在普通电脑的模拟器里跑“量子-经典混合模型”。
原创
博文更新于 昨天 10:54 ·
734 阅读 ·
14 点赞 ·
0 评论 ·
15 收藏

HCIE云计算超长考点精析

status字段不由用户定义,而是系统自动生成期望状态由spec字段描述,而非status创建对象时提供status违反Kubernetes API设计原则声明式API的本质:用户声明目标,系统负责实现状态分离架构spec与status的职责边界控制器工作原理:通过持续调和实现状态同步终极记忆要点“spec愿,status现;用户写spec,系统管status;创建无status,提供即错误;HCIE考设计,原理要清晰。Pod 本身不具备任何自愈能力。
原创
博文更新于 2025.12.15 ·
950 阅读 ·
14 点赞 ·
0 评论 ·
27 收藏

HCIE云计算考点超长解析

选项D错误的根本原因在于概念混淆用于控制容器进程的权限提升行为,而非直接限制系统调用权限。系统调用权限应由seccomp机制控制。对HCIE考生而言,必须清晰区分容器安全各机制的作用边界,这是通过安全模块考核的关键。记忆口诀“Escalation管提升,seccomp控调用,capabilities分能力,三者各司其职”三层验证用户到堡垒机:身份认证堡垒机到主机:网络连通性 + 主机认证操作审计:命令记录、会话录像安全设计原则最小权限原则:只开放必要的IP和端口。
原创
博文更新于 2025.12.15 ·
1041 阅读 ·
25 点赞 ·
0 评论 ·
9 收藏

命令执行漏洞 (RCE) 渗透测试实战指南

Burp Suite 或 OWASP ZAP 抓包工具、授权测试环境。:Burp Collaborator 或公网DNS服务器。:Java Web应用,可注入Java代码。:安装ysoserial工具、Java环境。:安装Commix、Python3环境。:识别表单输入点(如登录框):无回显但命令执行成功时。:确认RCE漏洞存在。
原创
博文更新于 2025.12.15 ·
344 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

Burp Suite渗透测试完全实战指南:从入门到打穿目标系统

本文内容仅用于授权环境下的安全测试,严禁用于非法攻击。未经授权的渗透测试属于违法行为,请遵守《网络安全法》。
原创
博文更新于 2025.12.15 ·
932 阅读 ·
31 点赞 ·
0 评论 ·
5 收藏

HCIE云计算考点精析

在华为云Stack架构中,"云模式"是WAF服务的标准部署模式和推荐配置,而非异常状态。选择云模式是正确且必要的配置步骤,不会导致接入失败。服务标准配置与异常状态的区别云服务依赖关系:WAF必须与ELB配合工作验证机制原理:流量要求和健康检查流程故障排查体系:从基础到高级的系统化方法终极记忆要点“云模式是标准,配置正确非故障;负载均衡是桥梁,DNS解析是基础;流量验证不可少,三者缺一难接入;HCIE排障要系统,原理实践相结合。
原创
博文更新于 2025.12.02 ·
1021 阅读 ·
20 点赞 ·
0 评论 ·
12 收藏

登录界面自动化渗透测试工具开发与实战(集成到kali中食用更佳)

登录界面作为Web应用的“安全第一道防线”,是等级保护测评中渗透测试的核心关注点——弱口令、空口令、用户枚举、任意用户登录等漏洞,不仅违反等保2.0中“身份鉴别”的要求,更可能成为攻击者突破系统的突破口。基于实战需求,开发了一款,专为等保测评场景设计,支持验证码智能检测、多漏洞自动化扫描、Hydra暴力破解集成,无需复杂配置即可快速完成测试。
原创
博文更新于 2025.12.02 ·
794 阅读 ·
30 点赞 ·
0 评论 ·
14 收藏

等保2.0必看!17个Web安全漏洞大白话解析

最小权限”:用户/系统只给“刚好够用的权限”,别给多余的;“默认必改”:默认账号、密码、配置,上线前必须改;“输入必验”:用户输入的任何内容,都要过滤/校验,别直接用。
原创
博文更新于 2025.12.02 ·
959 阅读 ·
12 点赞 ·
0 评论 ·
10 收藏

HCIE云计算考点精析

选项D错误的根本原因在于概念混淆用于控制容器进程的权限提升行为,而非直接限制系统调用权限。系统调用权限应由seccomp机制控制。对HCIE考生而言,必须清晰区分容器安全各机制的作用边界,这是通过安全模块考核的关键。记忆口诀“Escalation管提升,seccomp控调用,capabilities分能力,三者各司其职”三层验证用户到堡垒机:身份认证堡垒机到主机:网络连通性 + 主机认证操作审计:命令记录、会话录像安全设计原则最小权限原则:只开放必要的IP和端口。
原创
博文更新于 2025.12.01 ·
1028 阅读 ·
20 点赞 ·
0 评论 ·
23 收藏

HCIE云计算题超长解析

共享磁盘SQL Server AlwaysOn 可用性组Exchange 高可用部署共享SAN存储环境共享磁盘的关键特性多个节点同时读写同一磁盘依赖特殊的集群管理服务(如Windows Cluster Service)包含集群特有的元数据(如仲裁信息、心跳配置)通常使用SCSI-3 Persistent Reservations等技术保证数据一致性。
原创
博文更新于 2025.10.26 ·
550 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

Kubernetes对象配置字段详解:来龙去脉

apiVersion:指定API版本 → 正确描述metadata:提供唯一标识 → 正确描述kind:指定资源类型 → 正确描述spec期望状态,不是"当前运行状态" → 选项D描述错误理解spec与status的区别,是掌握Kubernetes工作原理的第一步,也是最重要的一步。这不仅是这道题的关键,更是实际使用Kubernetes的基础。
原创
博文更新于 2025.10.22 ·
940 阅读 ·
18 点赞 ·
0 评论 ·
11 收藏

云上修仙指南:从凡人到CCE大能的飞升之路

以前,每来一桌客人,你就要亲自下厨、摆盘、上菜,累得像条狗。现在,你有了CCE,就相当于请了一支“全自动智能厨房天团”!客人点菜(请求),系统自动分配厨师(容器),上菜速度嗖嗖的,还能根据客流量自动增减厨师数量!每个隔间里跑着一个应用(比如你的网站、APP后端),CCE负责让它们乖乖听话、互不打扰、按需增减、永不宕机!今天我们要修炼的,不是御剑飞行,也不是炼丹画符,而是一项更酷炫的神通——:本文纯属虚构,如有雷同,那一定是你也在修仙(划掉)云计算!祝各位道友在CCE的修仙之路上,一路顺风,早日飞升!
原创
博文更新于 2025.09.16 ·
599 阅读 ·
5 点赞 ·
0 评论 ·
11 收藏

大白话讲明白生成式模型和判别式模型

它不仅能“看到”数据的结果(比如“这条差评说‘太辣’”),还能“猜出”数据是怎么被“制造”出来的(比如“用户因为‘辣度超标’给差评的概率是80%”)。当有新订单进来时(比如“配送时间38分钟,评分4.2星,图片清晰,备注‘还行’”),判别式模型会根据总结的规律,计算“这道菜会差评的概率”(比如10%),然后输出“大概率不会差评”。(比如“差评的分布”“好评的分布”)。生成式模型的核心逻辑,就像你在追一部悬疑剧时,不仅想知道“谁是凶手”(结果),更想知道“凶手为什么要杀人”“他是怎么作案的”(背后的原因)。
原创
博文更新于 2025.08.29 ·
748 阅读 ·
12 点赞 ·
0 评论 ·
19 收藏

从“造假”到“造梦”:一文讲透生成对抗网络(GAN)

从2014年古德费洛的“猫鼠游戏”到今天的“AI造梦”,GAN的发展超出了所有人的想象。它不仅是一项技术,更是人类创造力的“延伸”——让机器学会“想象”,让数据“活起来”,让不可能变为可能。GAN是两个AI的“对抗游戏”,生成器想“造假”,判别器想“鉴伪”,在不断的博弈中,两者共同进化,最终创造出“以假乱真”的奇迹。未来,随着GAN与其他技术(如大模型、多模态学习)的融合,它将渗透到我们生活的每一个角落。
原创
博文更新于 2025.08.24 ·
431 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

深度学习中的“集体智慧”:Dropout技术详解——不仅是防止过拟合,更是模型集成的革命

这意味着模型没有学到普适的规律,而是“死记硬背”了训练数据,甚至包括了其中的噪声。尽管后续出现了许多新的技术,Dropout因其概念简洁、实现方便、效果显著,至今仍然是深度学习工具箱中不可或缺的经典组件。它的伟大之处在于,用一种极其简单的方式,实现了极其复杂的效果。集成学习是机器学习中公认的强大技术,它通过训练多个模型并综合其预测结果,通常能获得比单一模型更好的泛化性能。Dropout之所以强大,并非因为它简单,而是因为它从两个精妙的角度提升了模型的泛化能力。这是Dropout最核心、最本质的作用。
原创
博文更新于 2025.08.24 ·
782 阅读 ·
12 点赞 ·
0 评论 ·
16 收藏

重排序模型Reranker:颠覆搜索与推荐的AI核心技术揭秘

重排序模型(Reranker)是检索增强生成(RAG)系统中的关键组件,位于初步检索和最终生成之间。它的主要功能是对初步检索到的文档进行更精细的排序,显著提升最终生成结果的质量。想象一下,当你在樱桃园采摘樱桃时,首先会快速收集大量樱桃(初步检索),然后会有一个精细的分拣过程,测量每颗樱桃的直径(相关性)和糖分(内容质量),从大到小排列,剔除小颗粒、酸涩的樱桃(低相关内容)——这就是Reranker在RAG流程中扮演的角色。
原创
博文更新于 2025.08.23 ·
836 阅读 ·
6 点赞 ·
0 评论 ·
20 收藏

为什么云机房里RAID和Ceph共存?90%的运维都搞错了!

使用RAID会增加不必要的复杂性,并可能向Ceph隐藏磁盘故障,导致集群性能下降和潜在数据丢失。:某云厂商因在Ceph节点使用RAID,一次磁盘故障导致整个节点I/O下降70%,触发Ceph自动数据迁移,差点引发级联故障!:某金融公司因在Ceph上用RAID,导致一次双盘故障数据丢失,运维人员辩称"RAID应该保护了数据",结果被开除3人!:即使在这种场景,许多专家仍推荐使用Ceph的BlueStore直接管理NVMe,而非RAID 0!“先生,您看,我们的服务器标配RAID卡,能提供更好的数据保护…
原创
博文更新于 2025.08.16 ·
1022 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏
加载更多