JK0x07
码龄7年
求更新 关注
提问 私信
  • 博客:32,650
    32,650
    总访问量
  • 54
    原创
  • 177
    粉丝
  • 51
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2018-11-12
博客简介:

weixin_43679621的博客

查看详细资料
个人成就
  • 获得522次点赞
  • 内容获得0次评论
  • 获得503次收藏
  • 博客总排名101,504名
  • 原力等级
    原力等级
    4
    原力分
    505
    本月获得
    0
创作历程
  • 54篇
    2025年
成就勋章

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    机器学习
  • 游戏
    游戏引擎
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

代码随想录算法训练营 Day62 总结篇 开始的结束

TBC。
原创
博文更新于 2025.05.31 ·
210 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

代码随想录算法训练营 Day61 图论ⅩⅠ Floyd A※ 最短路径算法

我们来看初始化,我们是把 k =0 的 i 和j 对应的数值都初始化了,这样才能去计算 k = 1 的时候 i 和 j 对应的数值。是不是 要选一个最小的,毕竟是求最短路。节点1 到节点5的最短距离是不是可以有节点1 到节点3的最短距离 + 节点3 到节点5 的最短距离组成呢?那节点1 到节点9 的最短距离是不是可以由节点1 到节点5的最短距离 + 节点5到节点9的最短距离组成呢?节点k 到 节点j 的最短距离也是不经过节点k,中间节点集合。如果节点i 到 节点j的最短距离 不经过节点k,中间节点集合。
原创
博文更新于 2025.05.30 ·
2081 阅读 ·
31 点赞 ·
0 评论 ·
46 收藏

代码随想录算法训练营 Day60 图论Ⅹ Bellmen_ford 系列算法

边:节点2 -> 节点4,权值为1 ,minDist[4] > minDist[2] + (-3) ,更新 minDist[4] = minDist[2] + (-3) = 1 + (-3) = -2。,从队列中取出节点6,松弛节点6 作为出发点连接的边。本图中,对所有边进行松弛,真正有效的松弛,只有松弛边(节点1->节点2) 和边(节点1->节点3) 因此只要记录上一次松驰过的边即可。从队列中取出节点4,松弛节点4作为出发点连接的边(节点4 -> 节点6)边:节点4 -> 节点6,权值为4 ,
原创
博文更新于 2025.05.30 ·
1156 阅读 ·
11 点赞 ·
0 评论 ·
9 收藏

代码随想录算法训练营 Day59 图论Ⅸ dijkstra优化版 bellman_ford

那对所有边松弛三次 可以得到与起点 三条边相连的节点的最短距离,这个时候,我们就能得到到达节点3真正的最短距离,也就是 节点1 -> 节点2 -> 节点5 -> 节点3 这条路线。其实也同时计算出了,起点到达所有节点的最短距离,因为所有节点与起点连接的边数最多也就是 n-1 条边。1. 第一步,选择原点到节点最近且未访问过的边,pair<节点编号,源点到该节点的权值>与起点(节点1)一条边相邻的节点,到达节点2 最短距离是 1,到达节点3 最短距离是5。边:节点5 -> 节点6,权值为-2 ,
原创
博文更新于 2025.05.29 ·
1948 阅读 ·
38 点赞 ·
0 评论 ·
23 收藏

代码随想录算法训练营 Day58 图论Ⅷ 拓扑排序 Dijkstra

再强调一下 minDist[2] 的含义,它表示源点到节点2的最短距离,那么目前我们得到了源点到节点2的最短距离为1,小于默认值max,所以更新。(图中,max 表示默认值,节点0 不做处理,统一从下标1 开始计算,这样下标和节点数值统一,方便大家理解,避免搞混)- 源点到节点2的最短距离为1,小于原minDist[2]的数值max,更新minDist[2] = 1。1、选源点到哪个节点近且该节点未被访问过,源点距离源点最近,距离为0,且未被访问。这个图,我们只能将入度为0 的节点0 接入结果集。
原创
博文更新于 2025.05.29 ·
1020 阅读 ·
10 点赞 ·
0 评论 ·
11 收藏

代码随想录算法训练营 Day56 图论Ⅶ 最小生成树算法 Prim Kruskal

选择距离最小生成树最近的节点,加入到最小生成树,刚开始还没有最小生成树,所以随便选一个节点加入就好(因为每一个节点一定会在最小生成树里,所以随便选一个就好),那我们选择节点1(符合遍历数组的习惯,第一个遍历的也是节点1)Kruskal 与 prim 的关键区别在于,prim维护的是节点的集合,而 Kruskal 维护的是边的集合。排序后的边顺序为[(1,2) (4,5) (1,3) (2,6) (3,4) (6,7) (5,7) (1,5) (3,2) (2,4) (5,6)]
原创
博文更新于 2025.05.27 ·
1196 阅读 ·
17 点赞 ·
0 评论 ·
8 收藏

代码随想录算法训练营 Day55 图论Ⅵ 并查集Ⅱ 冗余链接

前两种入度为2的情况,一定是删除指向入度为2的节点的两条边其中的一条,如果删了一条,判断这个图是一个树,那么这条边就是答案。树除了根节点只有一个入度,因此如果有两个入度说明有多余边,有三种情况讨论。1. 如果我们找到入度为2的点,那么删一条指向该节点的边就行了。如果某一条边的两个点同时存在在一个集合中说明图中存在环了,需要删除。树的一个特点就是他的根只能有一个,因此一条分支就属于一个集合。确定图中一定有了有向环,那么要找到需要删除的那条边。3. 如果没有入度为2的点,说明图中有环了。
原创
博文更新于 2025.05.25 ·
405 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

代码随想录算法训练营 Day54 图论Ⅴ 并查集Ⅰ 寻找路径

首先要知道并查集可以解决什么问题呢?并查集常用来解决连通性问题。大白话就是当我们需要判断两个元素是否在同一个集合里的时候,我们就要想到用并查集。
原创
博文更新于 2025.05.25 ·
296 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

代码随想录算法训练营 Day53 图论Ⅳ 字符串接龙 有向图 岛屿周长

思路就是构造有向图,然后遍历图标记节点为 vis 为 true,最后遍历节节点,全为 true 则说明可访问。对原始的字符串逐个位进行替换,匹配是否出现在 list 中,出现了就记录到 map 中,直到找到字符。岛屿周长不需要 DFS or BFS 只需要判断当前岛的四周如果是海洋或者是边界 +1 即可。给出开始与结束的字符串,给出字符串 list,返回从字符串开始到结束过程中最短的路径。有向图的连通性判断,判断 1 是否可以到达所有节点。因为广搜就是以起点中心向四周扩散的搜索。
原创
博文更新于 2025.05.25 ·
586 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

代码随想录算法训练营 Day52 图论Ⅲ 岛屿问题Ⅱ 面积 孤岛 水流 造岛

+i) 这样从边框遍历,并记录遍历结果,最后 vis 就是我们访问过的非孤岛。计算孤岛总面积,一个想法是将相邻的陆地的位置置为 0,最后计算孤岛面积中最小的一个。题目是问:有没有一个节点可以让水流流到第一边界与第二边界,如果有输出这个节点的坐标。而且实际代码中流水是一条路径,遍历当前边的其他节点遇见了之前的路径就可以跳过了。1. 对岛屿遍历记录岛屿的编号与面积的关系,使用 unordermap。这样就只用遍历四个边的内容而不用遍历到里面的内容,减少了计算量。
原创
博文更新于 2025.05.20 ·
622 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

代码随想录算法训练营 Day51 图论Ⅱ岛屿问题Ⅰ

并且陆地没有被访问,在这个陆地的基础上进行 DFS 方法,或者是 BFS 方法。[[Day51 图论Ⅱ岛屿问题Ⅰ-250519-1.png|500]]深度优先 B广度优先在函数外初始化记录,深度优先 A 在函数内初始化记录。2. 对陆地进行 DFS 的时候时刻注意以访问的元素添加访问标记。岛屿最大面积,给出广度优先搜索,深度优先搜索(A 和 B)广度优先搜索保证入队列的时候就对数据做标记为访问。主函数部分不变,调用变成广度优先搜索。1. 遍历图,若遍历到了陆地。使用广度优先搜索方法。
原创
博文更新于 2025.05.19 ·
662 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

代码随想录算法训练营 Day49 图论Ⅰ 深度优先与广度优先

[[0-2 基础数据结构Ⅲ 图及其概念-250518-1.png]]V2​V1​。
原创
博文更新于 2025.05.19 ·
2174 阅读 ·
58 点赞 ·
0 评论 ·
38 收藏

代码随想录算法训练营 Day48 单调栈Ⅱ 接雨水Like

使用单调递减单调栈实现,求左边比当前柱子小的 left,中间柱子 mid,右边比当前柱子小的 right。当数据大于栈口时找到了比当前元素右侧大的第一个元素,此时栈口的下一个元素时左侧大的元素。纵向求解,只关注当前柱子的左高度与右高度,因此创建数组关注当前位置的左最大值与右最大值。单调栈解题,因为单调栈适合寻找一侧第一大的元素,我们使用递增栈实现,横向求解。使用单调栈求解柱子中左边比当前柱子矮的,右边比当前柱子矮的,求解最小值。面积为当前元素的高度乘以这个元素坐标和右边最小元素的宽度。
原创
博文更新于 2025.05.16 ·
370 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

代码随想录算法训练营 Day47 单调栈Ⅰ 每日温度Like

单调栈适合求当前元素左边或右边第一个比当前元素大或小的元素,找到元素进而确定数值下标等操作单调栈指的是:栈内的元素是递增或递减的(从栈口到栈底),单调排列栈内从栈口到栈底:求当前元素后面比他大的元素,遇到更大的元素就弹出之前的元素只收留更小的元素,保证递增栈内从栈口到栈底:求当前元素后比他小的元素只收留更大的元素,保证递减单调栈作用:存放遍历的元素。
原创
博文更新于 2025.05.15 ·
299 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

代码随想录算法训练营 Day46 动态规划ⅩⅢ 回文字符串

动规五部曲里,哪一部没想清楚,这道题目基本就做不出来,即使做出来了也没有想清楚,而是朦朦胧胧的就把题目过了。
原创
博文更新于 2025.05.14 ·
1101 阅读 ·
12 点赞 ·
0 评论 ·
21 收藏

代码随想录算法训练营 Day45 动态规划 ⅩⅡ 距离编辑Like

子序列判断编辑距离问题,本体的本质就是求 s 与 t 的最长公共子序列,只不过这个 s 不可删除1.dp[i][j]表示i-1, j-1为结尾的 s/t 字符串的最长公共子序列的长度2. 递推公式类似求最长公共子序列固定 s 不变,只删除 t(dp[i][j-1]不同子序列多少种删除 s 的方式让其变成 t1. 定义二维 dp 数组,2. 递推公式,考虑的是删除 s 使得变成 t,因此 t 不需要动,只考虑 s 的情况 (刚好匹配与-1 匹配)不考虑s[j-1]的元素。
原创
博文更新于 2025.05.13 ·
529 阅读 ·
18 点赞 ·
0 评论 ·
17 收藏

代码随想录算法训练营 Day44 动态规划 ⅩⅠ 子序列问题

编辑距离问题,本体的本质就是求 s 与 t 的最长公共子序列,只不过这个 s 不可删除。其中 0-1 时候结果为 0 意思是字符串与空字符查找那最大的公共子序列结果为 0。2. 递推公式:基于之前的结果与当前结果的最大值作为当前 i 的 dp 值。本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!3. 初始化 dp,由于 dp 是从前往后推导,且定义为。表示以 i-1 与 j-1 结尾的最长公共子序列的长度。为结尾的 s/t 字符串的最长公共子序列的长度。结尾的最长公共子序列长度。
原创
博文更新于 2025.05.12 ·
379 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

代码随想录算法训练营 Day42 动态规划Ⅹ 子序列问题

I-1 j-1 结尾方便代码书写,如果以 ij 结尾写需要在初始化的时候就寻找匹配项。2. 题目是连续子序列,因此只比较之前的子序列是否小于当前序列,若小于+1。2. 递增子序列,因此需要遍历当前以及以前长度的序列,因为是遍历每一个。无意义,因为 dp 定义是以 i-1 为结尾的 0-1 就是负数了。表示以 i-1 结尾的,以 j-1 结尾的最长重复子数组的长度。结果选择 dp 数组内最大的值表示当前 i 结尾最长递增子序列。,发现两个数组相同时,两个数组要同时退一格在这个基础上+1。
原创
博文更新于 2025.05.10 ·
500 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

代码随想录算法训练营 Day41 动态规划Ⅸ 股票问题 续集

买卖股票最佳时机 1:1.dp[i][0]表示持有股票的最大金额,dp[i][1]表示不持有股票的最大金额,表示盈利结果2. 递推公式由前一天持有金额和是否买股票决定决定是否花钱买入股票股票最大盈利买卖股票最佳时机 2 买股票之前的钱是从不持有股票得来1. Dp 数组定义如上题,dp[i][0]表示持有股票最大金额,dp[i][1]表示不持有股票的最大金额2. 递推公式的确定类似上题,本题中可以多次买卖股票了,因此持有股票的最大金额是多次变换的。
原创
博文更新于 2025.05.09 ·
1068 阅读 ·
12 点赞 ·
0 评论 ·
15 收藏

代码随想录算法训练营 Day40 动态规划Ⅷ 股票问题

2. 递推公式的确定类似上题,本题中可以多次买卖股票了,因此持有股票的最大金额是多次变换的。有贪心算法与 dp 两种,贪心算法就是吃干净每个 T,有波动就吃,波动小于 0 不操作。本题目说了只能持有或卖出两个状态,不存在持有卖一半的情况,因此持有之前一定是不持有的。结果最后只存在 2 4 中,因为卖出的金额一定比买入金额高,取两次卖出的最大值。基于上一题的升级版,有两次买卖机会,可以买卖一次,卖两次,不买卖。表示不持有股票的最大金额,表示盈利结果。持有的最大金额:取持有或者新买入的最大。
原创
博文更新于 2025.05.08 ·
481 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏
加载更多