Matrix 工作室
码龄7年
求更新 关注
提问 私信
  • 博客:3,885,209
    社区:12,859
    问答:1,803
    动态:3,520
    学院:7,488
    视频:19,739
    3,930,618
    总访问量
  • 1,644
    原创
  • 591
    排名
  • 10,626
    粉丝
  • 70
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:天津市
加入CSDN时间: 2018-10-04

个人简介:为天地立心,为生民立命,为往圣继绝学,为万世开太平。

博客简介:

Alex

博客描述:
Hello,我是 Alex 007,一个热爱计算机编程和硬件设计的小白,为啥是007呢?因为叫 Alex 的人太多了,再加上每天007的生活,Alex 007就诞生了。
查看详细资料
个人成就
  • 优质创作者: 人工智能技术领域
  • 领域专家: 算法与数据结构技术领域
  • 获得4,459次点赞
  • 内容获得1,246次评论
  • 获得12,138次收藏
  • 代码片获得38,255次分享
  • 原力等级
    原力等级
    9
    原力分
    8,948
    本月获得
    14
创作历程
  • 4篇
    2025年
  • 29篇
    2024年
  • 8篇
    2023年
  • 167篇
    2022年
  • 231篇
    2021年
  • 720篇
    2020年
  • 639篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 从源代码学Python
    付费
    98篇
  • Django-完美主义框架
    付费
    30篇
  • Vue从入门到核心
    付费
    14篇
  • 论文精读
    2篇
  • AI master Road
    25篇
  • 强化学习
    2篇
  • 自然语言处理
    3篇
  • 可解释机器学习
    1篇
  • LangChain
    1篇
  • 多模态大模型
    1篇
  • 自动驾驶
    3篇
  • Tesla
    7篇
  • WEB开发项目大模板
    2篇
  • Carla教程
    7篇
  • 银河系搭车客
    1篇
  • Python数学之美
    1篇
  • Paper
    3篇
  • 随笔
    5篇
  • AI框架
    49篇
  • XGB
    2篇
  • PyTorch
    9篇
  • LightSeq
    1篇
  • TensorFlow
    3篇
  • Big Data
  • Hadoop
    2篇
  • Hive
    12篇
  • 面试
    11篇
  • 项目
    1篇
  • 路飞学城
    3篇
  • COVID-19大数据平台
    5篇
  • Web 标注平台
    2篇
  • YOLO实战-物体检测
    5篇
  • 程序人生
    14篇
  • Matrix工作室
    7篇
  • 官网
    1篇
  • Matrix工作室CRM管理系统
    6篇
  • 前端
    15篇
  • G6 图可视化引擎
    23篇
  • 分布式
    2篇
  • 服务器
  • Nginx
    8篇
  • Jenkins
    9篇
  • 数据库
    2篇
  • LeetCode SQL练习题
    4篇
  • Algorithm & Data Structure
    339篇
  • Algorithm Master Road
    8篇
  • Data Structure Master Road
    1篇
  • PAT
    1篇
  • POJ
    6篇
  • 百练
    1篇
  • 蓝桥杯
    202篇
  • 51Nod
    1篇
  • 校招算法
    2篇
  • LeetCode算法题
    256篇
  • 信息学奥赛一本通
    59篇
  • 蓝桥杯ACM训练系统
    2篇
  • 数据结构错题集
    6篇
  • 网课
  • Linux操作系统
    9篇
  • EduCoder机器学习
    2篇
  • 编辑器
    6篇
  • 数据结构
    8篇
  • 电子设计
    29篇
  • raspberry
    21篇
  • Arduino自动逗猫棒
  • 操作系统
    25篇
  • LeetCode Shell练习题
    2篇
  • LeetCode 多线程练习题
    4篇
  • 错题集
    5篇
  • 编程语言
    22篇
  • 蒜蓉粉丝蒸Shell
    1篇
  • 计算机网络
    7篇
  • 计算机网络错题集
    17篇
  • 网络机器人之爬虫
    13篇
  • 报错处理集锦
  • Git
    1篇
  • Python
    4篇
  • XGBoost
    1篇
  • PyTorch报错集锦
    2篇

TA关注的专栏 8

TA关注的收藏夹 0

TA关注的社区 11

TA参与的活动 6

TA的推广
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 大数据
    mysqlhadoophiveredis
  • 前端
    javascriptcssvue.jsreact.jses6webpack前端框架
  • 后端
    node.js
  • 人工智能
    opencv语音识别计算机视觉机器学习caffe深度学习神经网络自然语言处理tensorflowmxnetpytorch图像处理nlp数据分析scikit-learn聚类集成学习迁移学习分类回归
  • 网络与通信
    https
  • 微软技术
    typescript
  • 搜索
    elasticsearch
  • 测试
    selenium测试用例postman
  • 运维
    容器jenkinsdevops自动化kubernetes系统架构网络运维开发
  • 网络空间安全
    安全系统安全安全架构
  • 服务器
    linuxcentos
  • 用户体验设计
    uxui
Alex ☆ 想要改变世界的007程序员
watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MzMzNjI4MQ==,size_16,color_FFFFFF,t_70
☆☆ 友情链接 ☆☆
3_dcrusher g?b=qq&nk=1176996982&s=640
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【论文精读】Aligning Language Models to Explicitly Handle Ambiguity

作者提出了一种名为“感知歧义性对齐”(APA)的新型对齐流程,旨在通过利用模型自身的内在知识,增强 LLM 处理 query 中歧义性问题的能力。该方法采用隐式信息增益指标来量化模型自身感知到的模糊性,使模型能够基于该指标通过对齐操作有效管理歧义/非歧义查询。
原创
博文更新于 2025.11.30 ·
793 阅读 ·
7 点赞 ·
0 评论 ·
16 收藏

【论文精读】Clarify When Necessary: Resolving Ambiguity Through Interaction with LMs

本文提出一个任务无关的评估框架,解决交互式AI助手在人机交互中的消歧问题。核心挑战在于如何确定何时需要与用户交互以澄清模糊请求。作者将模糊性量化为用户意图的熵,提出意图-SIM(intent-SIM)方法,通过模拟用户交互估算熵值来判断是否需要澄清。实验表明,该方法在识别需澄清的错误预测上优于其他不确定性评估基准。评估框架采用三阶段流程:识别需澄清的输入、生成澄清问答对、预测最终输出,并通过交互预算下的性能提升和AUROC指标验证效果。
原创
博文更新于 2025.11.23 ·
1213 阅读 ·
28 点赞 ·
1 评论 ·
11 收藏

论文精读:Prompting Large Language Models to Tackle the Full Software Development Lifecycle

状态: Summarizing作者: Bowen Li机构: 上海人工智能实验室Publishing/Release Date: 2024年12月14日Summary: 现有的Benchmark主要聚焦于编码环节,例如单文件代码生成或者仓库问题调试,并不能全面衡量真实软件开发中的问题。这篇论文提出了DevEval,系统评估了LLMs在软件开发生命周期中各阶段的表现,涵盖软件设计、环境搭建、实现开发、验收测试及单元测试等全流程。
原创
博文更新于 2025.07.22 ·
833 阅读 ·
16 点赞 ·
0 评论 ·
12 收藏

给人做项目,又不想让人看到源码或者复制拷贝,该怎么办?

本文分享了小程序开发中保护后端代码的经验。通过Django+Docker部署的项目面临甲方可能窃取代码的风险,作者采取了三重防护措施:1)利用阿里云容器镜像服务的访问凭证控制镜像权限;2)加密宿主机文件系统(需root权限);3)使用Nuitka将Python代码编译为可执行文件。重点介绍了第一种方案的实施细节,包括Github Actions自动化构建流程和严格的docker login/logout机制。虽然最终发现是虚惊一场,但这些防护措施已成为团队后续项目的标准配置,有效保障了代码安全。
原创
博文更新于 2025.05.28 ·
1337 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

尝试一下 InstantX/FLUX.1-dev-IP-Adapter 的效果

从下面这个链接找到了一个新的工作流:https://github.com/Shakker-Labs/ComfyUI-IPAdapter-Flux/issues/35。
原创
博文更新于 2024.12.05 ·
1011 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【Shell】常用指令集锦

Shell常用命令集锦
原创
博文更新于 2024.10.28 ·
833 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

The size of tensor a (4) must match the size of tensor b (8) at non-singleton dimension 1

的第二个维度也是 8,那就说明官方的。之后应该还有一些操作,再之后才进行的。的维度没有对上,其实也就是。找了一下应该是下面这段代码里的。然后打印了一下官方的。
原创
博文更新于 2024.10.17 ·
593 阅读 ·
9 点赞 ·
0 评论 ·
0 收藏

Number of inference steps is ‘None‘, you need to run ‘set_timesteps‘ after creating the scheduler

按照报错的提示,需要增加一行。
原创
博文更新于 2024.10.17 ·
472 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

ValueError: `added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.

是 forward 函数传进来的参数,在。,所以我们只需要把这部分代码加上即可。不为 None 的话,并且要。为 None,在这个函数里,这个报错也就是说如果。
原创
博文更新于 2024.10.17 ·
458 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

ImportError: /root/paddlejob/apex-master/build/lib.linux-x86_64-3.9/fused_layer_norm_cuda.cpython-39

解决方案:卸载了 pytorch,重新安装了 torch==2.1.0,推测应该是编译的版本不匹配导致的。
原创
博文更新于 2024.10.16 ·
420 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

ufunc ‘add‘ did not contain a loop with signature matching types (dtype(‘<U3‘), dtype(‘<U3‘))

可以发现 clip_score 的元素类型为字符串,那其实下面这个代码改一下就好了。这个看起来像是两个变量没有对齐导致的报错,一般是类型没有对齐。的报错,所以看起来应该是。的时候报错的,最后是。
原创
博文更新于 2024.10.12 ·
469 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

HTTPSConnectionPool(host=‘nvlabs-fi-cdn.nvidia.com‘, port=443)

看最终的报错就知道,这是一个下载模型权重超时的报错,一般是由于资源可能在墙外,导致国内下载不到。解决这种问题的一个常见的方案就是把资源下载到本地,然后上传到服务器上,修改代码离线加载。根据下面这段代码,一层一层网上找,找到。
原创
博文更新于 2024.10.11 ·
567 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Accelerate + DeepSpeed 能否同时对多个模型进行分布式训练?

但是这两个模型都比较大,都放在一张卡上的话会 OutOfMemory,所以就想用 Accelerate + DeepSpeed 对模型进行切分。今天遇到一个问题,一个训练场景中需要两个模型交替优化,跟 GAN 比较类似。
原创
博文更新于 2024.09.12 ·
1717 阅读 ·
5 点赞 ·
2 评论 ·
1 收藏

JetBrains Pycharm 自动注释

File → Settings → Editor → File and Code Templates在左侧 Files 里找到 Python Script。# -*- coding: utf-8 -*-# @Time : ${DATE} ${TIME}# @File : ${NAME}.py# @Description : None# ----------------------------------------------# ☆ ☆ ☆ ☆ ☆ ☆ ☆ # &
原创
博文更新于 2024.09.10 ·
617 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

图网络机器学习典藏版合集

发布资源 2022.02.03 ·
pdf

R语言文本挖掘、情感分析和可视化哈利波特小说文本数据

利用文本挖掘技术对哈利波特系列书籍进行情感分析,旨在探索这些书籍中情感的分布和变化。通过使用tidyversetidytext和等R语言包,可以提取并分析书籍中的情感词汇。
原创
博文更新于 2024.07.01 ·
1055 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

用Python获取Windows本机安装的所有应用程序的实现与分析

一个项目中需要获取本机安装的所有应用程序列表,花了一点时间研究了一下,分享出来。主要通过访问注册表和桌面快捷方式来完成这一任务,因为注册表中获取到的应用程序列表不完全,因此通过桌面快捷方式进行补充。
原创
博文更新于 2024.07.01 ·
1323 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

DeepSpeed ZeRO 通信量分析

假设模型参数为Ψ。
原创
博文更新于 2024.06.06 ·
3701 阅读 ·
32 点赞 ·
0 评论 ·
26 收藏

【翻译】如何在 RAG 应用中添加引用

本指南回顾了如何让模型在生成响应时添加引用的源文档的哪些部分。本文介绍了5种方法:1. 使用函数调用来引用文档ID;2. 使用函数调用来引用文档ID并提供文本片段;3. 直接使用提示词;4. 检索后处理(压缩检索到的上下文以使其更具相关性);5. 生成后处理(再次通过 LLM 来用引文注释生成的答案)。我们通常建议使用第 1 种方法,也就是说,如果模型支持函数调用,推荐方法 1 或 2;否则,或者如果这些方法失败,可以继续尝试其它方法。
翻译
博文更新于 2024.06.05 ·
1395 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

论文精读:TASKBENCH: BENCHMARKING LARGE LANGUAGE MODELS FOR TASK AUTOMATION

LLM 带动了任务自动化的发展,它将用户指令描述的复杂任务分解为子任务,并调用外部工具来执行它们,在 Agent 中发挥着核心作用。但是目前还缺少系统化、标准化的基准来催 LLM 任务自动化的发展。任务自动化可以分为三个关键阶段:任务分解、工具调用和参数预测。为了生成高质量的评估数据集,作者引入了工具图的概念来表示用户意图中分解的任务,并采用反向指令方法来模拟用户指令和注释。作者还提出了 TASKEVAL,从不同方面评估 LLM 的能力,包括任务分解、工具调用和参数预测。
原创
博文更新于 2024.05.28 ·
1303 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多