征途阿韦
码龄5年
求更新 关注
提问 私信
  • 博客:982,117
    视频:1
    982,118
    总访问量
  • 991
    原创
  • 2,480
    排名
  • 2,709
    粉丝
  • 2,000
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
加入CSDN时间: 2020-10-14
博客简介:

weixin_42466723的博客

查看详细资料
个人成就
  • 获得12,719次点赞
  • 内容获得0次评论
  • 获得14,084次收藏
  • 代码片获得873次分享
创作历程
  • 829篇
    2025年
  • 87篇
    2024年
  • 151篇
    2021年
  • 15篇
    2020年
成就勋章
TA的专栏
  • 探索GDI+编程:从基础到高级图形技术
    付费
    8篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 8

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

34人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Linly-Talker支持多轮对话记忆,上下文连贯性优秀

Linly-Talker通过结构化记忆与多模态协同,实现数字人对用户偏好、情绪和对话历史的长期记忆与连贯表达。它不仅让回复更精准,还使语音语调、面部表情随上下文自然变化,真正逼近真人交互体验。
原创
博文更新于 2 小时前 ·
477 阅读 ·
7 点赞 ·
0 评论 ·
7 收藏

Linly-Talker实现中英混合语音输入识别

Linly-Talker通过整合ASR、LLM、TTS与面部动画技术,实现了流畅的中英混合语音识别与数字人实时交互。系统采用多语言联合建模提升识别准确率,结合语义对齐与语音克隆技术,让数字人不仅能听懂跨语言对话,还能自然表达并精准同步口型,已在客服、教育和直播等场景落地应用。
原创
博文更新于 3 小时前 ·
483 阅读 ·
6 点赞 ·
0 评论 ·
12 收藏

Langchain-Chatchat结合华为云盘古大模型加速推理

基于Langchain-Chatchat与华为云盘古大模型,企业可打造本地化、高效且安全的智能问答系统。通过RAG架构实现私有知识精准检索与生成,结合昇腾AI芯片优化推理性能,保障数据不出域的同时支持高并发响应,适用于金融、政务、制造等多领域知识管理场景。
原创
博文更新于 8 小时前 ·
390 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

Langchain-Chatchat日志监控与性能分析工具推荐

针对Langchain-Chatchat在企业级应用中的性能瓶颈,通过日志、指标和追踪三大可观测性支柱实现高效监控。结合结构化日志、OpenTelemetry追踪与Prometheus指标采集,快速定位响应慢、空结果等问题,提升系统稳定性与排查效率。
原创
博文更新于 9 小时前 ·
470 阅读 ·
13 点赞 ·
0 评论 ·
14 收藏

Langchain-Chatchat问答系统延迟优化的三大策略

针对Langchain-Chatchat问答系统响应慢的问题,聚焦嵌入模型、向量检索和LLM推理三大瓶颈,提出轻量化模型选择、HNSW索引优化与llama.cpp量化部署等实用方案,结合ONNX加速、缓存机制与异步处理,在普通CPU环境下将响应时间压缩至2秒内,兼顾性能与准确性。
原创
博文更新于 10 小时前 ·
734 阅读 ·
16 点赞 ·
0 评论 ·
19 收藏

Langchain-Chatchat问答系统灰度期间知识库更新频率

在Langchain-Chatchat系统灰度阶段,知识库更新需平衡时效与稳定。结合文档预处理、向量数据库增量写入与本地LLM特性,建议采用每日一次的节奏,辅以快照备份、回归测试和人工审核,确保可控、可回滚的渐进式更新。
原创
博文更新于 10 小时前 ·
387 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

Langchain-Chatchat问答系统SLA保障体系建设方法

Langchain-Chatchat通过本地化部署、模块化流程与精细化监控,实现对AI问答系统稳定性、准确性和安全性的全面掌控。从向量库构建到模型推理,每个环节都支持可观测性与容错设计,结合重试降级、资源监控和版本回滚机制,真正达成可信赖的SLA保障。
原创
博文更新于 16 小时前 ·
339 阅读 ·
14 点赞 ·
0 评论 ·
11 收藏

FaceFusion在环境保护宣传中的志愿者形象生成

借助FaceFusion技术,普通人可“化身”环保志愿者参与数字宣传,通过AI换脸与增强实现个性化内容生成。该技术降低制作门槛,提升公众代入感,结合隐私保护与防滥用机制,推动公益传播向智能、互动、情感化方向发展,让每个人都能在环保叙事中看见自己。
原创
博文更新于 19 小时前 ·
540 阅读 ·
20 点赞 ·
0 评论 ·
20 收藏

FaceFusion镜像支持容器化弹性扩缩容

通过将FaceFusion封装为GPU支持的Docker镜像并集成Kubernetes HPA,实现AI换脸服务的高效弹性伸缩。利用多阶段构建优化镜像体积,结合NFS共享模型缓存与资源独占调度,显著降低冷启动延迟和运维成本,支撑百万级日请求场景下的稳定低延迟推理。
原创
博文更新于 20 小时前 ·
398 阅读 ·
19 点赞 ·
0 评论 ·
19 收藏

一键部署FaceFusion镜像,快速接入GPU算力服务

通过Docker容器化技术,将FaceFusion及其依赖环境打包,结合云端GPU算力实现快速部署。用户无需配置CUDA、PyTorch等复杂环境,几分钟内即可启动高性能人脸融合系统,显著降低AI应用门槛,提升开发与创作效率。
原创
博文更新于 21 小时前 ·
278 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

FaceFusion能否处理鱼眼镜头畸变视频?校正算法集成

FaceFusion本身无法直接处理鱼眼镜头的桶形畸变,但通过集成OpenCV的去畸变算法作为预处理步骤,可有效恢复图像几何结构,提升人脸检测与融合质量。实验表明,校正后检测成功率、关键点精度和主观评分显著提高,延迟增加可控。该方案体现几何校正与深度学习协同的实用范式。
原创
博文更新于 22 小时前 ·
429 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

FaceFusion提供详细的Token消费明细查询

本文综述了GaN、SiC MOSFET在功率半导体中的应用,DC-DC变换器拓扑设计,Class-D音频放大器及I²S、PDM等音频接口的硬件实现,涵盖嵌入式实时控制与PMIC在便携设备中的关键技术。
原创
博文更新于 23 小时前 ·
79 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FaceFusion镜像提供详细的使用统计报表

FaceFusion衍生镜像集成了轻量级使用统计系统,实现从人脸检测到输出的全链路监控。通过数据采集、聚合与报表生成三层结构,支持资源追踪、性能分析和计费审计,兼容Prometheus等主流监控体系,显著提升AI工具在生产环境中的可观测性与运维效率。
原创
博文更新于 昨天 11:15 ·
507 阅读 ·
11 点赞 ·
0 评论 ·
6 收藏

FaceFusion如何计算Token消耗?按帧还是按秒计费?

FaceFusion以帧为单位计量Token消耗,因每帧需独立完成人脸检测、特征提取与融合处理,计算负载与帧数线性相关。相比按秒计费,按帧计费更公平精准,能真实反映GPU推理成本,避免高帧率视频资源滥用,也便于用户控制预算和平台实现细粒度资源管理。
原创
博文更新于 昨天 09:27 ·
315 阅读 ·
9 点赞 ·
0 评论 ·
11 收藏

Kotaemon与国产芯片适配进展:已在昇腾环境成功运行

Kotaemon智能代理引擎成功适配华为昇腾AI芯片,通过模块化RAG架构与NPU加速深度融合,在金融、政务等高安全场景下实现低延迟、高性能的可控智能对话系统,标志着国产AI软硬协同生态从可用走向好用。
原创
博文更新于 前天 11:17 ·
442 阅读 ·
8 点赞 ·
0 评论 ·
28 收藏

Kotaemon能否实现问答结果的自动归档?

在高合规要求场景下,Kotaemon通过RAG架构与插件机制,天然支持问答结果的自动归档。系统在响应过程中自动记录引用文档、上下文及元数据,无需额外开发即可实现审计溯源。结合异步处理、分层存储与脱敏策略,既保障性能又满足合规需求,让每次对话都成为可追溯、可复用的企业知识资产。
原创
博文更新于 前天 08:35 ·
633 阅读 ·
9 点赞 ·
0 评论 ·
18 收藏

Kotaemon如何检测用户情绪?情感分析插件介绍

Kotaemon通过插件化情感分析让AI理解用户情绪,利用预训练模型实时识别文本中的情感倾向,支持动态响应与智能分流。插件嵌入处理流程却不影响性能,可灵活更换模型,兼顾效率与人性化交互体验。
原创
博文更新于 前天 07:15 ·
199 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

Kotaemon开源框架深度解析:模块化设计提升开发效率

Kotaemon通过模块化RAG、多轮对话管理和插件化工具集成,构建高可用的智能对话系统。各组件可独立替换,支持动态扩展与外部系统联动,提升开发效率与生产稳定性,适用于企业级AI应用落地。
原创
博文更新于 前天 04:16 ·
272 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

Kotaemon Webhook机制实现事件驱动式响应

Kotaemon通过Webhook机制将AI代理升级为事件驱动的数字中枢,支持毫秒级自动响应。外部系统如CRM、IoT设备触发事件后,系统可结合RAG引擎、对话管理器与工具调用链,完成从感知到执行的闭环。内置安全校验、幂等处理与异步重试保障生产稳定性,真正实现跨系统智能联动。
原创
博文更新于 前天 03:45 ·
250 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

EmotiVoice前端文本预处理模块详解

EmotiVoice通过文本归一化、情感关键词检测、韵律边界预测和多音字消歧等步骤,将普通文本转化为富含情绪与节奏信息的语言指令。这套前端流程不仅提升语音自然度,还降低人工标注成本,让合成声音更具表现力和情感真实感。
原创
博文更新于 2025.12.17 ·
685 阅读 ·
23 点赞 ·
0 评论 ·
13 收藏
加载更多