自动化与智能化的认知分层原则
摘要:本文提出认知分层原则以区分自动化与智能化的本质差异。自动化是对已稳定认知过程的工程冻结,强调执行稳定性;智能化则处理认知未稳定的状态,关注动态认知结构的形成与调整。核心原则包括:二者属于不同认知层级而非连续等级;智能化不得干预已冻结的自动化层;智能化需以显式认知结构为前提。研究表明,只有明确分层才能使二者协同,为复杂工业系统提供可控的智能化路径。(150字)
应用智能技术发展路径的探讨
智能制造模型与架构
ISA-95与ISA-88融合的原理与实践指导
ISA-88相关的理论与实践指导 TA关注的专栏 0
TA关注的收藏夹 0
TA关注的社区 0
TA参与的活动 1

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频
