归来少年Plus
码龄8年
求更新 关注
提问 私信
  • 博客:697,432
    社区:134
    697,566
    总访问量
  • 308
    原创
  • 730
    粉丝
  • 138
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
加入CSDN时间: 2018-02-04
博客简介:

我在深圳的这些日子的博客

博客描述:
记录深圳的工作和生活
查看详细资料
个人成就
  • 获得786次点赞
  • 内容获得58次评论
  • 获得1,055次收藏
  • 代码片获得9,759次分享
  • 博客总排名12,645名
  • 原力等级
    原力等级
    6
    原力分
    2,283
    本月获得
    2
创作历程
  • 4篇
    2025年
  • 54篇
    2024年
  • 18篇
    2023年
  • 43篇
    2022年
  • 22篇
    2021年
  • 94篇
    2020年
  • 40篇
    2019年
  • 34篇
    2018年
成就勋章
TA的专栏
  • 微服务
    13篇
  • 数据库
    13篇
  • istio
    22篇
  • 架构
    20篇
  • python
    4篇
  • 安全
    4篇
  • 性能优化
    1篇
  • 大数据
    32篇
  • kafka
    2篇
  • 测试
    1篇
  • MQ
    6篇
  • 开心一刻
    1篇
  • 电子相册部署
  • 概
    13篇
  • docke
    20篇
  • linu
    11篇
  • k8
    27篇
  • haprox
    1篇
  • java
    32篇
  • openstack
    1篇
  • 开发技巧
    4篇
  • go
    1篇
  • Jenkins
    1篇
  • 前端
    16篇

TA关注的专栏 5

TA关注的收藏夹 0

TA关注的社区 11

TA参与的活动 3

兴趣领域 设置
  • 移动开发
    flutter
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

24人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

手把手教你构建创意AI:PyTorch生成式模型开发指南(二)

本文介绍了在Apple M4芯片MacBook上安装PyTorch的完整流程。首先对比了PyTorch与TensorFlow框架的特点,重点介绍了PyTorch的动态计算图、GPU加速等优势。随后详细说明了安装步骤:通过Miniconda创建Python环境,安装PyTorch及其相关库,并验证MPS加速功能是否可用。最后配置了Jupyter Notebook开发环境,展示其交互式编程特性。整个过程针对ARM架构优化,确保能充分利用M4芯片的性能进行深度学习开发。
原创
博文更新于 2025.10.14 ·
599 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

手把手教你构建创意AI:PyTorch生成式模型开发指南(一)

(如"夕阳下的城堡"对应特定色彩、构图和光影特征),再根据用户输入的新文本描述,从学习到的联合概率分布中采样,逐步生成符合描述的全新图像。生成式人工智能(Generative AI, GAI)是一种通过学习现有数据模式来创建全新内容的AI技术,能够生成文本、图像、音频、视频、代码等多种形式的输出。:通过大规模文本预训练,具备强大泛化能力,支持多种下游任务。:编码器-解码器结构,完全基于注意力机制,无循环层。:输入不限于文本,还包括图像、音频等。(如 T5):用于序列到序列任务。训练可并行,显著提速,支持。
原创
博文更新于 2025.10.13 ·
276 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

支付网关系统前后端鉴权方案

模块鉴权方式说明前端收银台JWT Token易于扩展、跨域友好商户API调用HMAC签名安全可靠、无状态内部系统调用服务Token / mTLS高安全通信支付通道回调签名 + IP 白名单提高安全性与幂等处理管理后台权限细化、便于审计。
原创
博文更新于 2025.07.22 ·
706 阅读 ·
29 点赞 ·
0 评论 ·
7 收藏

支付鉴权方案介绍

场景推荐鉴权方式前后端分离 + 多端支持开放平台接口 + 安全要求高HMAC签名或OAuth2.0单体系统,部署在同一域名下银行/支付类接口mTLS + 签名校验小程序/移动端 + 登录态JWT + Refresh机制。
原创
博文更新于 2025.07.22 ·
702 阅读 ·
20 点赞 ·
0 评论 ·
14 收藏

阿里云升级https的坑。443。要开防火墙

https://blog.csdn.net/QianYiYu/article/details/88024843?fromshare=blogdetail&sharetype=blogdetail&sharerId=88024843&sharerefer=PC&sharesource=weixin_41709748&sharefrom=from_link
原创
博文更新于 2024.10.26 ·
285 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

vue3的nginx配置文件配置(nginx只配置前端vue3的nginx.conf文件)

此配置文件,可以配置纯前端的vue3的配置文件,可以不用后端的配置文件,不需要考虑后端,对于纯前端的项目和工程有一定的参考意义。3、nginx.conf配置。1、本地的访问网址的链接。
原创
博文更新于 2024.08.25 ·
754 阅读 ·
3 点赞 ·
1 评论 ·
1 收藏

java获取resources目录下的文件

java获取resources目录下的文件。
原创
博文更新于 2024.07.15 ·
465 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

TOGAF架构介绍

一个完整的框架包括:异常处理组件,数据访问组件,日志组件,错误码组件。软件开发过程中通用能力的集合。
原创
博文更新于 2024.06.12 ·
486 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

ChatGPT/GLM API使用

GLM 智谱 API调用
原创
博文更新于 2024.04.26 ·
671 阅读 ·
5 点赞 ·
1 评论 ·
2 收藏

什么是langchain

使用Langchain中不同组件的特性和能力,可以构建不同场景下的应用,如聊天机器人、基于文档的问答、知识管理、个人助理、Agent智能体等等。Fake LLM,用于测试缓存的支持,比如 in-mem(内存)、SQLite、Redis、SQL用量记录。Indexes:索引,用来结构化文档,以便和模型交互。Agents:代理,决定模型采取哪些行动,执行并且观察流程,直到完成为止。Prompts:提示,包括提示管理、提示优化和提示序列化。Models:模型,是各种类型的模型和模型集成。
原创
博文更新于 2024.04.26 ·
1084 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

AI小知识----什么是RAG

RAG
原创
博文更新于 2024.04.22 ·
2861 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

阿里云ECS服务器安装docker

ECS 安装docker。详细步骤
原创
博文更新于 2024.04.19 ·
949 阅读 ·
3 点赞 ·
1 评论 ·
1 收藏

ollama大语言模型

【代码】ollama大语言模型。
原创
博文更新于 2024.04.18 ·
918 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

权限认证和 设计模式

使用非对称加密(或对称加密),给前端一个公钥让他把数据加密后传到后台,后台负责解密后处理数据。1 文件很大建议使用对称加密,不过不能保存敏感信息。2. 文件较小,要求安全性高,建议使用非堆成加密。RBAC权限模型5张表的关系(用户、角色、权限)一. 上传数据的安全性怎么控制?组长审批,主管审批,副总裁,总裁。检验参数,填充订单,算价,落库。二. 权限认证是如何实现的?用户与角色的表,一对多的关系。角色与权限的表,一对多的关系。内容审核(视频,文章,课程)文本审核,图片审核,视频审核。
原创
博文更新于 2024.04.12 ·
438 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

限流的实现方式

2、Nginx 漏桶算法。3、网关,令牌桶算法。
原创
博文更新于 2024.04.09 ·
288 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

分布式事务的解决方案--Seata架构

seata架构
原创
博文更新于 2024.03.18 ·
636 阅读 ·
9 点赞 ·
0 评论 ·
9 收藏

jdk8与jdk17的区别。springboot2.x与springboot3.x的区别

总的来说,JDK 17 是在 JDK 8 的基础上进一步发展和改进的版本,具有更多的语言特性、性能改进、安全性更新以及库和工具的改进。因此,对于那些使用 JDK 8 的开发人员来说,升级到 JDK 17 可能会带来许多好处,包括更好的开发体验、更高的性能和更好的安全性。总的来说,Spring Boot 3.x 是对 Spring Boot 2.x 的进一步改进和演进,旨在提供更好的性能、更多的功能和更好的开发体验。
原创
博文更新于 2024.03.14 ·
1997 阅读 ·
23 点赞 ·
0 评论 ·
19 收藏

了解下索引的几棵树?

③B+树便于扫库和区间查询:底层是双向指针的链表,进行范围查询直接从叶子节点进行查询,不需要每次从根节点开始获取数据。②查询效率B+树更加稳定:数据都存储到叶子节点,都从根开始找到叶子节点,查找路径差不多,所以效率稳定。①磁盘读写代价B+树更低:非叶子节点不存储数据,只存储指针。
原创
博文更新于 2024.03.14 ·
551 阅读 ·
13 点赞 ·
0 评论 ·
9 收藏

redis的缓存穿透,缓存并发,缓存雪崩,缓存问题及解决方案

缓存穿透问题原因解决方案
原创
博文更新于 2024.02.28 ·
1176 阅读 ·
21 点赞 ·
0 评论 ·
12 收藏

架构师能力模型

存储一致性问题的协议:计算输入和输出控制器
原创
博文更新于 2024.02.24 ·
519 阅读 ·
8 点赞 ·
0 评论 ·
6 收藏
加载更多