从零开始学习人工智能
码龄8年
求更新 关注
提问 私信
  • 博客:582,865
    视频:49
    582,914
    总访问量
  • 472
    原创
  • 4,629
    排名
  • 2,341
    粉丝
  • 66
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2017-12-26
博客简介:

weixin_41544125的博客

查看详细资料
个人成就
  • 获得6,754次点赞
  • 内容获得40次评论
  • 获得6,178次收藏
  • 代码片获得3,795次分享
  • 原力等级
    原力等级
    7
    原力分
    3,269
    本月获得
    159
创作历程
  • 360篇
    2025年
  • 112篇
    2024年
  • 1篇
    2023年
成就勋章
TA的专栏
  • java开发
    8篇
  • 海量数据处理商用短链接生成器平台

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 6

TA参与的活动 2

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

不重启Docker容器修改时间的全方案总结

在使用Docker的过程中,很多开发者会遇到需要修改容器时间的场景:比如调试时间相关的业务代码、模拟跨时区测试、复现时间触发的Bug,但Docker的容器设计(共享宿主机内核、权限限制)让直接修改容器时间变得复杂。本文会梳理Docker容器时间的底层逻辑,以及修改时间的所有可行方案。
原创
博文更新于 前天 17:57 ·
621 阅读 ·
9 点赞 ·
0 评论 ·
10 收藏

《8076 能通 9003 却超时?一次 Docker 容器跨网段排障小记》

8076 通、9003 不通,说明网络链路(Docker 网桥 → 宿主机转发 → 物理交换机)没问题,只看到 SYN,没有 SYN-ACK → 包被目标主机丢弃。宿主机(192.168.100.8)本地执行。都 OK,排除 DNS 与三层路由大问题。RustFS 日志也不再出现。正常,所以服务确定在跑。
原创
博文更新于 前天 16:24 ·
249 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

解决Docker容器无法访问宿主机IP和端口的全维度实践指南

现象:浏览器访问返回,原因是FastAPI/Flask服务未定义对应路由。# http_test_server.py 修正示例# 必须定义容器请求的路由:/questions/test# 启动服务时绑定0.0.0.0(关键,否则仅容器内可访问)Docker容器访问宿主机IP/端口的核心是突破网络隔离优先使用实现网络连通,兼顾端口映射与隔离性;网络通后若出现服务异常,需从路由、代码、依赖等维度排查应用层问题;避免滥用,仅在无隔离需求时使用。
原创
博文更新于 前天 15:44 ·
678 阅读 ·
9 点赞 ·
1 评论 ·
10 收藏

踩坑记:DBeaver连接GBase 8S时“编码转换失败”的终极解决

GBase 8S的编码问题,核心是“字符集三重匹配”。通过JDBC URL强制指定字符集,能绕过DBeaver驱动配置的兼容性问题,是最高效的解决方式。
原创
博文更新于 2025.12.15 ·
354 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

GBase 8s重启后连接失败?从命令失效到彻底解决的实战指南

回顾整个故障处理过程,其实很多问题都源于前期部署时的"临时思维"——只关注当前能用,忽略了持久化和自动化。专用用户原则:始终使用gbasedbt用户操作数据库,避免root用户权限混乱环境持久化原则:核心环境变量必须写入用户登录配置文件,拒绝临时加载权限最小化原则:数据库目录、配置文件仅开放gbasedbt用户的读写权限自动化原则:配置开机自启和故障自动重启,减少人工干预),启动失败、连接异常等问题都能在日志中找到明确线索。
原创
博文更新于 2025.12.15 ·
905 阅读 ·
16 点赞 ·
0 评论 ·
14 收藏

实战 | GBase 8s 端口配置与远程访问排障全流程

sqlhosts文件是 GBase 8s 端口配置的核心,必须包含对外服务和本地回环服务;所有配置操作需以gbasedbt用户执行,避免权限问题;修改配置后需重启数据库,通过onstat -验证状态。
原创
博文更新于 2025.12.13 ·
754 阅读 ·
16 点赞 ·
0 评论 ·
18 收藏

GBase 8s Express Edition安装与连接排坑全记录:从环境激活到图形化客户端配置

安装完成后,进入目录,切换到ksh并执行激活环境;用onstat -验证实例是否在线;图形化连接时,必须匹配、端口、数据库名三个核心参数;优先用gbasedbt用户操作,避免权限问题。
原创
博文更新于 2025.12.12 ·
552 阅读 ·
10 点赞 ·
0 评论 ·
8 收藏

避坑指南:GBase 8s 完整安装流程 + 路径权限安全校验失败终极解决方案

路径链校验是核心:GBase 8s 会递归检查所有上级目录,仅加固目标目录无效。权限必须严格为 750:禁止使用755777等宽松权限,避免公共访问风险。工具路径不能错:必须用find命令定位onsecurity真实路径,避免无效加固。信任用户限制:安装路径属主只能是root或gbasedbt,其他用户会被判定为不安全。父路径选择合规:优先选择/opt/usr/local等默认root属主目录,避免/home/用户名这类用户属主目录。GBase 8s 的安装权限校验核心是全路径链的安全合规性。
原创
博文更新于 2025.12.12 ·
750 阅读 ·
20 点赞 ·
0 评论 ·
17 收藏

SpringBoot实战:MinIO API配置与工具类优雅封装

本文通过"依赖引入→配置优化→工具类封装→使用示例"的完整流程,实现了SpringBoot项目中MinIO API的优雅封装。核心思路是通过配置解耦与分层设计,降低代码耦合度,提升可维护性;同时注重敏感信息安全与资源管理,确保工具类在开发与生产环境中都能稳定运行。通过合理的扩展,该工具类可轻松适配不同场景的需求,为项目开发提供高效支持。
原创
博文更新于 2025.12.09 ·
753 阅读 ·
30 点赞 ·
0 评论 ·
25 收藏

拆透贝叶斯优化的“决策大脑”:采集函数到底怎么“选”参数?

利用(Exploitation):“就着已知的好结果往下挖”。比如你试了糖6克时分数最高,那接下来优先试糖5.5克、6.5克,看看能不能找到更好的结果——这是基于已有经验的优化。探索(Exploration):“去未知的区域碰碰运气”。比如你从来没试过糖10克,虽然根据经验觉得分数可能不高,但万一有惊喜呢?或者有些区域的“经验可信度极低”,比如糖8克只试了一次,也需要再试几次验证规律——这是为了避免错过最优解,完善经验规律。
原创
博文更新于 2025.12.09 ·
469 阅读 ·
17 点赞 ·
0 评论 ·
15 收藏

机器学习中的“助推器”与“调参术”:动量与参数优化全解析

提到“动量”,我们很容易联想到物理中的概念——物体运动时由于惯性产生的持续运动趋势。在机器学习中,动量的核心思想与之类似,它是优化器中用于加速训练、抑制震荡的关键技术,主要解决传统梯度下降(SGD)训练速度慢、易在局部最优值附近徘徊的问题。如果说动量是“训练的加速器”,那么参数优化就是“模型的调音师”。可学习参数:模型在训练中自动更新的参数,比如神经网络的权重和偏置、线性回归的系数等;超参数:需要人工设定或通过搜索确定的参数,比如学习率、决策树的深度、SVM的核函数参数等。
原创
博文更新于 2025.12.09 ·
685 阅读 ·
8 点赞 ·
0 评论 ·
20 收藏

从反复报错到稳定运行:麒麟与Ubuntu时间同步服务部署全解析

本次时间同步服务部署,核心解决了"依赖源失效"“服务配置冲突”"网络链路拦截"三大核心问题,最终实现了稳定可靠的跨系统时间同步。沉淀出两点关键经验:内网服务优先本地化:对于无外网权限或外网源不稳定的场景,启用本地时钟源、采用离线包安装等方式,可大幅提升服务可靠性。脚本化提升运维效率:将网络检测、双方案同步、日志记录等功能集成到脚本中,不仅降低操作门槛,更能实现故障快速追溯。后续可基于此方案,扩展至多节点集群同步,通过增加主备时间服务器进一步提升服务可用性。
原创
博文更新于 2025.12.08 ·
969 阅读 ·
19 点赞 ·
0 评论 ·
10 收藏

深入解析MPC多分片钱包转账的底层实现:从原理到代码实践

MPC三分片钱包的转账核心是“门限签名+分片协同”,通过将私钥拆分为多个独立分片,既规避了单私钥泄露的风险,又通过2-out-of-3门限保证了使用的便捷性。开发者在实现MPC钱包时,需重点关注分片生成的安全性、签名聚合的正确性,以及多链签名协议的适配性,最终实现“安全”与“易用”的平衡。
原创
博文更新于 2025.12.05 ·
630 阅读 ·
18 点赞 ·
0 评论 ·
25 收藏

FastAPI依赖注入踩坑记:从服务初始化失败到全局异常优雅处理

如果报错函数未定义:确保依赖函数在路由之前定义,或通过模块导入导入路径错误:若函数在其他模块,需确认导入语句正确,如"""SQL连接异常"""# 从i18n配置中获取多语言提示在数据库依赖get_dbdb = Nonetry:db = SessionLocal() # 数据库会话本地实例yield dbraise SQLConnectionError() # 连接失败时抛出自定义异常finally:if db:db.close()依赖函数必加异常捕获。
原创
博文更新于 2025.12.04 ·
1077 阅读 ·
30 点赞 ·
0 评论 ·
17 收藏

玩转Neo4j:从入门到实战的完整指南(含K8s集群部署)

直接使用默认配置可能无法满足生产需求,建议创建自定义文件,配置核心参数。# values.yaml 核心配置neo4j:# 集群认证配置auth:password: Neo4j@2024 # 生产环境使用强密码,建议通过Secret注入# 核心节点配置core:replicas: 3 # 核心节点数,生产环境至少3个resources:requests:cpu: 2limits:cpu: 4# 持久化存储配置。
原创
博文更新于 2025.12.03 ·
1431 阅读 ·
22 点赞 ·
0 评论 ·
12 收藏

告别存储困境:RustFS 如何用内存安全重塑分布式对象存储

RustFS 最核心的底气,来自其开发语言 Rust 的独特特性。作为当下最受推崇的内存安全语言,Rust 从语法层面杜绝了空指针、缓冲区溢出等常见内存漏洞,这让 RustFS 从底层就具备了100%的内存安全性,彻底规避了传统 C/C++ 存储工具因内存问题引发的服务崩溃、数据泄露等风险。同时,Rust 语言的运行效率无限接近 C 语言,这让 RustFS 摆脱了“安全即性能妥协”的行业魔咒。
原创
博文更新于 2025.12.03 ·
597 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

PDF解析双雄对决:Unstructured vs PyMuPDF 深度对比与选型指南

Unstructured是“结构化解析专家”,擅长将复杂PDF转化为标准化数据,适合需要深度分析的场景;PyMuPDF是“高效提取工具”,擅长快速获取PDF中的文本和图像,适合轻量、高性能的基础需求。选择时需明确项目的核心诉求:若追求“结构化、自动化”,Unstructured是首选;若追求“速度、轻量、多功能”,PyMuPDF更合适。在实际项目中,也可根据具体任务灵活组合两者,兼顾效率与效果。
原创
博文更新于 2025.12.02 ·
744 阅读 ·
31 点赞 ·
0 评论 ·
29 收藏

TruLens vs Ragas:LLM应用评估工具深度对比

TruLens和Ragas都是优秀的LLM应用评估工具,它们在设计理念和功能侧重上的差异使其适用于不同的开发需求。TruLens作为通用型评估平台,提供了更全面的可观测性和扩展性,适合复杂LLM应用的全生命周期管理;而Ragas则在RAG专项评估上更为专注和简洁,适合快速验证和优化RAG系统。无论选择哪款工具,关键是建立系统化的评估流程,摆脱"凭感觉"的开发模式,通过数据驱动的方式持续改进LLM应用的质量和可靠性。
原创
博文更新于 2025.12.02 ·
603 阅读 ·
22 点赞 ·
0 评论 ·
21 收藏

TruLens:打造可靠可信的LLM应用开发与评估平台

定义上下文相关性反馈函数.on(context) # 引用从select_context定义的上下文TruLens为LLM应用开发者提供了一套完整的评估和追踪解决方案,从开发初期的原型验证到生产环境的性能监控,都能发挥重要作用。其v1版本的模块化架构使其更加灵活和可靠,能够适应不同规模和类型的LLM应用需求。无论是构建RAG系统、智能代理还是其他LLM驱动的应用,TruLens都能帮助你深入理解应用性能,做出数据驱动的改进决策,最终打造出更可靠、更可信的AI应用。立即访问。
原创
博文更新于 2025.12.02 ·
857 阅读 ·
15 点赞 ·
0 评论 ·
9 收藏

Ragas:LLM应用评估的“瑞士军刀”,让AI质量可量化、可优化

降低评估成本:自动化测试生成与指标计算,减少80%以上的人工工作量;提升评估可信度:客观指标替代主观判断,让性能优劣“可量化、可对比”;加速迭代效率:生产数据与评估结果联动,快速定位问题并验证优化效果。无论是个人开发者调试RAG系统,还是企业级AI应用的规模化质量管控,Ragas都能成为LLM应用开发中的“质量守门人”。如果你正在构建LLM应用,不妨从开始,体验数据驱动的AI优化新范式。
原创
博文更新于 2025.12.02 ·
1010 阅读 ·
22 点赞 ·
0 评论 ·
18 收藏
加载更多