太极幻宇
码龄8年
求更新 关注
提问 私信
  • 博客:216,088
    216,088
    总访问量
  • 197
    原创
  • 1,107
    粉丝
  • 111
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2017-11-23
博客简介:

weixin_41150257的博客

查看详细资料
个人成就
  • 获得1,811次点赞
  • 内容获得2次评论
  • 获得1,987次收藏
  • 博客总排名2,414,039名
创作历程
  • 197篇
    2024年
成就勋章
TA的专栏
  • 3d
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 5

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

强化学习 需要样本数据吗 ? 怎么用这些数据 demo

强化学习确实需要样本数据,这些数据在训练过程中起着至关重要的作用。以下是关于强化学习如何使用样本数据的详细解释,以及一个具体的demo示例。
原创
博文更新于 2024.12.10 ·
2366 阅读 ·
11 点赞 ·
0 评论 ·
8 收藏

多传感器融合与多模态的区别

多传感器融合定义:多传感器融合(Multi-sensor Fusion, MSF)是利用计算机技术,将来自多个传感器或多源的信息和数据,以一定的准则进行自动分析和综合,以完成所需的决策和估计而进行的信息处理过程。范畴:它主要关注于如何有效地整合来自不同传感器(如有源或无源传感器)的数据,以提高系统的感知、决策和估计能力。多模态定义:多模态(Multimodality)是一个涉及多个领域和层面的概念,主要指的是同时使用两种或多种感官(如视觉、听觉、触觉、嗅觉等)进行信息交互的方式。
原创
博文更新于 2024.12.10 ·
2477 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

多传感器融合算法

多传感器融合算法的主要方法可以分为随机类方法和人工智能类方法两大类。
原创
博文更新于 2024.12.10 ·
1478 阅读 ·
23 点赞 ·
0 评论 ·
16 收藏

强化学习训练的模型 是如何进行推理的

强化学习是机器学习的一个经典子领域,主要关注决策方向的问题,即如何完成决策任务并学习最大化累积奖励的策略。
原创
博文更新于 2024.12.09 ·
843 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

强化学习的详细解释及demo

这个模型可能是一个简单的策略表(在离散状态和动作空间中),也可能是一个复杂的神经网络(在连续状态或动作空间中)。在强化学习中,智能体通过与环境的交互来学习。环境的状态可以表示为智能体当前的位置,动作可以表示为向左或向右移动,奖励只有在到达目标位置时才给出(奖励为1),其他情况下奖励为0。强化学习是一种机器学习方法,它使智能体(Agent)能够在环境中通过试错的方式学习最优策略,以最大化其从环境中获得的累积奖励。请注意,这个示例代码仅用于说明如何加载一个神经网络模型,并且假设你的模型是一个简单的全连接网络。
原创
博文更新于 2024.12.09 ·
1272 阅读 ·
15 点赞 ·
0 评论 ·
20 收藏

svm的形象理解

SVM的实现过程涉及多个关键步骤和概念,包括定义超平面、确定支持向量、最大化间隔、求解优化问题以及得到分类决策函数等。对于线性不可分的情况,SVM通过引入核函数将输入空间中的非线性问题转化为高维特征空间中的线性问题。此外,SVM还可以通过引入松弛变量和软间隔来处理近似线性可分的情况。这些技术和方法使得SVM在分类和回归分析等领域中具有广泛的应用和强大的性能。
原创
博文更新于 2024.12.08 ·
775 阅读 ·
23 点赞 ·
0 评论 ·
19 收藏

大模型都是transformer架构吗

关于“大模型都是transformer吗”这一问题,可以明确的是,目前业界的大部分大模型确实采用了transformer架构。
原创
博文更新于 2024.12.08 ·
1040 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

CNN RNN Transform 的主要区别

CNN(卷积神经网络)、RNN(循环神经网络)和Transformer是深度学习中的三种重要网络结构,它们在模型结构、特征表示能力、训练效率和应用场景等方面存在显著区别。
原创
博文更新于 2024.12.08 ·
910 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

大模型与普通深度学习模型的主要区别

大模型与普通深度学习模型的主要区别体现在多个方面,包括规模与复杂性、训练数据、计算能力需求、应用场景以及涌现能力等。
原创
博文更新于 2024.12.08 ·
1572 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

半监督学习 怎样学习的?需要提前训练吗?

半监督学习是一种机器学习方法,它综合利用了有标签的数据和无标签的数据来训练模型。
原创
博文更新于 2024.12.08 ·
660 阅读 ·
18 点赞 ·
0 评论 ·
12 收藏

无监督学习怎样学习的? 需要提前训练吗?

无监督学习是机器学习中的一种重要方法,它侧重于对未标记的数据进行分析和学习,从中提取出有意义的信息或模式。
原创
博文更新于 2024.12.08 ·
916 阅读 ·
9 点赞 ·
0 评论 ·
16 收藏

大模型的微调方法有哪些

大模型微调(Fine-tuning)是在已经预训练好的大型深度学习模型基础上,使用新的、特定任务相关的数据集对模型进行进一步训练的过程。这种微调技术的主要目的是使模型能够适应新的、具体的任务或领域,而无需从头开始训练一个全新的模型。
原创
博文更新于 2024.12.08 ·
772 阅读 ·
16 点赞 ·
0 评论 ·
11 收藏

slam 回环检测与约束 是怎样起作用的

回环检测与约束在SLAM系统中起着至关重要的作用。它们通过检测重复访问的位置、修正累积误差、引入位姿和几何约束等手段,提高了地图构建的准确性和一致性。在实际应用中,需要根据具体场景和需求选择合适的回环检测方法和优化算法,以实现最佳的SLAM效果。
原创
博文更新于 2024.11.29 ·
657 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

词袋模型的理解

词袋模型(Bag of Words,简称BoW)是一种在自然语言处理和信息检索中常用的文本表示方法。
原创
博文更新于 2024.11.29 ·
718 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

卡尔曼滤波、粒子滤波较形象的理解与例子

为了更形象地理解卡尔曼滤波和粒子滤波,我将分别提供它们的解释及具体例子。
原创
博文更新于 2024.11.29 ·
471 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

人脸关键点检测算法有哪些

需要注意的是,虽然传统算法在人脸关键点检测方面取得了一定的成果,但与现代深度学习算法相比,它们在处理复杂背景和遮挡情况下的性能可能相对较弱。随着深度学习技术的不断发展,越来越多的研究者开始将深度学习算法应用于人脸关键点检测领域,并取得了显著的效果。人脸关键点检测的深度学习算法多种多样,每种算法都有其独特的优势和适用场景。在实际应用中,可以根据具体需求和资源条件选择合适的算法进行人脸关键点检测。
原创
博文更新于 2024.11.29 ·
1077 阅读 ·
12 点赞 ·
0 评论 ·
16 收藏

orb slam3 代码详细解析

ORB-SLAM3 是一个开源的视觉 SLAM(Simultaneous Localization and Mapping,即同时定位与地图构建)系统,它支持单目、双目和RGB-D相机,并能够在室内和室外环境中进行准确的实时定位和地图构建。ORB-SLAM3 是 ORB-SLAM 和 ORB-SLAM2 的继承者,引入了多项改进和新功能。以下是对 ORB-SLAM3 代码的一个详细解析框架,旨在帮助你理解其关键组件和工作流程。但请注意,由于篇幅限制,这里无法提供完整的代码细节,而是概述主要部分和流程。
原创
博文更新于 2024.11.29 ·
869 阅读 ·
22 点赞 ·
0 评论 ·
7 收藏

vgg 详细说明

综上所述,VGG模型是一个经典的深度卷积神经网络模型,其简单统一的网络结构和深度的网络层次使得它在图像分类等任务上取得了优秀的性能。然而,其参数较多和计算量大的局限性也限制了其在某些场景中的应用。VGG模型在深度学习领域具有重要地位,为后续的卷积神经网络模型提供了重要的参考和借鉴。例如,ResNet、Inception等更先进的模型架构都在一定程度上受到了VGG模型的影响。:在每个卷积层序列之后使用2x2的最大池化层,以减少特征图的尺寸并增加特征的局部性。:通常接受224x224大小的RGB图像。
原创
博文更新于 2024.11.29 ·
1246 阅读 ·
18 点赞 ·
0 评论 ·
15 收藏

人体关节点检测

‌。
原创
博文更新于 2024.11.25 ·
626 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

orb 特征描述子 的形象理解

ORB(Oriented FAST and Rotated BRIEF)特征描述子是一种用于图像特征描述的算法,它结合了FAST特征点检测和BRIEF特征描述,以实现高效且具有旋转不变性的特征提取和匹配。
原创
博文更新于 2024.11.24 ·
1232 阅读 ·
10 点赞 ·
0 评论 ·
19 收藏
加载更多