trigger333
码龄8年
求更新 关注
提问 私信
  • 博客:319,798
    社区:4,535
    问答:5,261
    动态:5,910
    335,504
    总访问量
  • 198
    原创
  • 777
    粉丝
  • 120
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
加入CSDN时间: 2017-10-23

个人简介:work hard, play hard.

博客简介:

trigger的博客

查看详细资料
个人成就
  • 获得417次点赞
  • 内容获得56次评论
  • 获得830次收藏
  • 代码片获得345次分享
  • 博客总排名27,759名
  • 原力等级
    原力等级
    5
    原力分
    1,709
    本月获得
    1
创作历程
  • 11篇
    2025年
  • 2篇
    2024年
  • 22篇
    2023年
  • 128篇
    2022年
  • 24篇
    2021年
  • 20篇
    2019年
成就勋章
TA的专栏
  • 大模型
    4篇
  • 向量数据库
    1篇
  • MySQL
    13篇
  • 运维
    6篇
  • Linux
    13篇
  • JVM
    10篇
  • 数据库
    14篇
  • Java基础知识
    46篇
  • 四大件之数据结构和算法
    15篇
  • 场景设计
    6篇
  • 程序员
    4篇
  • 常用工具
    7篇
  • Redis
    9篇
  • Python
    1篇
  • 中间件
    4篇
  • 四大件之设计模式
    3篇
  • 计算机视觉
    2篇
  • Spring框架
    8篇
  • 前端
    8篇
  • 项目
    1篇
  • 多线程
    26篇
  • RPC
    16篇
  • 源码
    8篇
  • Netty
    3篇
  • 四大件之计算机网络
    16篇
  • 分布式系统设计
    5篇
  • 四大件之操作系统
    4篇
  • 回溯问题
    5篇
  • 链表
    1篇

TA关注的专栏 7

TA关注的收藏夹 0

TA关注的社区 15

TA参与的活动 2

兴趣领域 设置
  • 数据结构与算法
    排序算法
  • 大数据
    mysql
  • 后端
    spring
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

23人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

RAG:让AI成为你的知识专家

RAG(检索增强生成)是一种让大语言模型更准确的技术,通过为AI配备"外置大脑"来实时检索外部知识库。其工作原理包括问题解析、知识检索、内容整合和生成输出四个步骤,核心是向量检索技术。RAG广泛应用于智能客服、教育辅导、医疗诊断、企业知识库和法律金融等领域。搭建RAG系统需要选择合适的工具、准备结构化知识库、优化检索流程和生成质量,并通过持续评估迭代改进。该技术有效解决了AI"幻觉"和知识过时问题。
原创
博文更新于 2025.08.27 ·
1020 阅读 ·
15 点赞 ·
0 评论 ·
11 收藏

大模型性能压测利器 locust 实战 (FastAPI)

本文介绍了使用Locust进行性能测试的方法,并对比了服务端不同实现方式的性能表现。首先通过pip install locust安装工具,然后编写Python脚本分别实现服务端和客户端代码。服务端提供了三种接口实现:阻塞调用、多进程调用和异步非阻塞调用。测试结果显示:单线程阻塞调用约10 QPS;5进程池实现约50 QPS;而异步非阻塞调用可达1500 QPS,与直接返回结果相当。关键差异在于阻塞机制:time.sleep(0.1)会阻塞整个事件循环,而await asyncio.sleep(0.1)仅挂起
原创
博文更新于 2025.08.25 ·
851 阅读 ·
16 点赞 ·
0 评论 ·
8 收藏

大模型的畅享

大脑作为天然的复杂模型,通过脑机接口可与数字世界连接,实现知识直接加载。大模型将具备深度语义解析、跨模态理解和智能经济等能力,包括语境把握、多感官融合认知,以及推动新产业革命。文章预见AI将成为核心生产力,彻底重塑人类学习、工作和生活方式。
原创
博文更新于 2025.08.17 ·
191 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

向量数据库基础和实践 (Faiss)

主流产品包括Faiss、Milvus等,通过实践示例展示了如何使用Faiss进行向量存储和相似性检索。向量数据库作为AI时代的新型数据基础设施,专门用于存储和查询高维向量数据,支持非结构化数据的相似度检索。其核心原理包括将数据转换为向量表示、使用距离度量计算相似度,并采用高效的索引结构(如FLAT、IVF、HNSW)加速查询。与传统关系型数据库相比,向量数据库更擅长处理非结构化数据,在推荐系统、自然语言处理、计算机视觉、多模态数据处理和大模型增强(RAG)等场景表现突出。
原创
博文更新于 2025.08.17 ·
891 阅读 ·
17 点赞 ·
0 评论 ·
19 收藏

MySQL是如何加行级锁的

行级锁分为记录锁、间隙锁和临键锁,分别用于锁定单条记录、记录之间的间隙以及记录与间隙的组合。在查询时,MySQL 会根据记录的存失和查询条件自动选择合适的锁类型,以防止幻读等并发问题。通过 performance_schema.data_locks 可以查看当前数据库的加锁情况。实战中,唯一索引和非唯一索引的等值查询会分别加不同的锁,如记录存在时加记录锁,不存在时加间隙锁或临键锁。锁的类型和范围直接影响并发事务的
原创
博文更新于 2025.05.12 ·
970 阅读 ·
8 点赞 ·
0 评论 ·
14 收藏

order by是怎么工作的?

中的 sql/orderbyDemo 部分将order by 的字段加到索引当中,查询耗时。根本原因是 利用了索引的有序性,不用进行额外的排序(Extra 中的 Using filesort)
原创
博文更新于 2025.05.04 ·
437 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

线上问题排查方法和命令总结 持续更新中...

一般出现了线上问题,优先是考虑影响,先止损,再解决,以及后续如何规避。如果是批量问题(需要知道问题代码的影响范围),需要进行批量更新来规避掉潜在的风险。
原创
博文更新于 2025.04.15 ·
733 阅读 ·
19 点赞 ·
0 评论 ·
14 收藏

OOM问题排查和解决

堆 Dump 文件是一个二进制文件,记录了堆内存中对象的详细信息,包括对象的类型、大小、引用关系等。
原创
博文更新于 2025.04.14 ·
390 阅读 ·
8 点赞 ·
0 评论 ·
1 收藏

windows 常用命令总结

windows 常用命令总结 tasklist taskkill netstat
原创
博文更新于 2025.04.05 ·
1034 阅读 ·
23 点赞 ·
0 评论 ·
18 收藏

Trae是一天一更新吗? 更新频率好高。

发布动态 2025.04.04

Trae 很好用,比如想快速上手学习Go的web 应用开发,可以直接创建一个新项目,从0开始都由 Trae 生成,只需和它不断地对话即可。 如下是生成的简单demo。 https://github.com/VeniVeci/goWeb 用Trae 来辅助理解代码效率也很高。

发布动态 2025.03.22

https://www.cursor.com/cn 很不错的工具,生产力大大提升。

发布动态 2025.02.24

MongoDB 简介

MongoDB 是一种 NoSQL 数据库,采用 文档模型 存储数据,支持灵活的 JSON 格式文档。它无需预定义表结构,能够动态调整数据结构,适合处理复杂、多变的数据类型。
原创
博文更新于 2025.02.23 ·
1475 阅读 ·
22 点赞 ·
0 评论 ·
28 收藏

工作中用到的 Linux 总结(持续更新中...)

工作后服务都是部署在 linux 系统下的,在运维的过程中不可避免的会和 linux 打交道。知道 linux 的一些知识,不仅可以对计算机操作系统,网络,进程等有更深入的了解,同时也可以让你写出更高效的代码(windows 下运行的情况和 linux 下有时候差好多)。
原创
博文更新于 2025.02.22 ·
1299 阅读 ·
11 点赞 ·
0 评论 ·
26 收藏

线上死锁问题排查和处理

通过 jps + jstack 来定位和排查。如果线程长时间处于阻塞,就需要考虑是否是死锁了。SHOW ENGINE INNODB STATUS 查看死锁日志
原创
博文更新于 2025.02.22 ·
1199 阅读 ·
25 点赞 ·
1 评论 ·
17 收藏

系统设计之资源占用 (Prometheus指标介绍)

设计系统时需要提前考虑 需要的资源,比如内存,硬盘,网络带宽以及CPU等等。
原创
博文更新于 2024.10.28 ·
1243 阅读 ·
28 点赞 ·
0 评论 ·
19 收藏

ChatGPT 使用建议

1 经常使用,但不要过度使用;2 得不到答案时不妨试试搜索引擎; 3 学会提问,学会和chatgpt对话;
原创
博文更新于 2024.10.24 ·
952 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

三级网络技术选择题+大题(前两道)总结

发布资源 2018.05.09 ·
doc

JDK1.8 HashMap源码解析 (扩容机制,null键,与1.7的区别等)

hashmap支持null键吗?当扩容的时候,所有元素都会 rehash吗?怎么减少扩容次数为什么node数组的大小是2的n次?
原创
博文更新于 2023.12.23 ·
287 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pycharm依赖管理(不要用pip freeze)

在使用python虚拟环境时,可以使用requirements.txt来管理当前项目的依赖。注意,不要用 pip freeze > requirements.txt 这个命令,因为它会引入很多无关的包。可以使用 pipreqs ./ --encoding=utf-8./ 表示当前项目的目录,--encoding=utf-8 是为了避免报错(编码相关)Why to usepipreqs?
原创
博文更新于 2023.12.17 ·
1677 阅读 ·
6 点赞 ·
0 评论 ·
10 收藏
加载更多