点云Point
码龄8年
求更新 关注
提问 私信
  • 博客:195,257
    社区:1
    195,258
    总访问量
  • 56
    原创
  • 123
    粉丝
  • 172
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
加入CSDN时间: 2017-10-23
博客简介:

weixin_40756000的博客

查看详细资料
个人成就
  • 获得222次点赞
  • 内容获得62次评论
  • 获得1,176次收藏
  • 代码片获得1,718次分享
  • 博客总排名1,335,005名
创作历程
  • 5篇
    2022年
  • 31篇
    2021年
  • 22篇
    2019年
成就勋章
TA的专栏
  • 深度学习
    28篇
  • 从掉坑到爬坑
    5篇
  • opencv
    1篇
  • python
    2篇
  • 编程题
  • 51单片机
    6篇
  • 听课笔记
    3篇

TA关注的专栏 5

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    图像处理
  • 嵌入式
    嵌入式硬件
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

23人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Python实现K-means聚类算法并可视化生成动图

K-means算法介绍简单来说,K-means算法是一种无监督算法,不需要事先对数据集打上标签,即ground-truth,也可以对数据集进行分类,并且可以指定类别数目牧师-村民模型K-means 有一个著名的解释:牧师—村民模型:有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的村民,于是每个村民到离自己家最近的布道点去听课。听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的村民的地址,搬到了所有地址的中心地带,并且在海报上更
原创
博文更新于 2023.06.25 ·
7638 阅读 ·
11 点赞 ·
4 评论 ·
83 收藏

C++指针的用法/指针与引用的区别

计算机程序本质上是对存储在内存中的数据进行的一系列操作。既然要对数据进行操作,首先要解决的第一个问题就是数据存储在什么地方?一般情况下我们通过int x = 10;来定义一个变量,可以通过x来直接访问该变量存储的值,而指针提供了另外一种访问该变量存储的值的方法*p;。指针的定义:指针是一个变量,其存储的是值的地址,而不是值本身。
原创
博文更新于 2022.11.25 ·
836 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

解决Qt Creator中无法添加/找不到MSVC编译器的问题

最近需要使用Qt Creator生成DLL供C#调用,之前一直装的都是32位的MinGW编译器,无法被使用VS系列开发的程序调用,因此需要安装带MSVC编译器的Qt Creator,在安装过程中走了点弯路,总结如下。
原创
博文更新于 2022.10.18 ·
13740 阅读 ·
5 点赞 ·
1 评论 ·
11 收藏

qrencode生成二维码\微信开源算法识别opencv-contrib(一)

最近需要开发一个二维码识别的应用,调研了几个开源算法库,opencv、quirc、zxing、zbar和微信开源的基于深度学习的识别算法,最终选定了微信开源的算法,毕竟又好又快。
原创
博文更新于 2022.07.15 ·
3804 阅读 ·
2 点赞 ·
0 评论 ·
13 收藏

voc数据集格式转coco数据集格式

计算机视觉的第一步就是准备数据集,常用的数据集是coco标准,网上大部分数据集的格式都不是coco格式,所以需要转换。转换的第一步是认识voc和coco格式
原创
博文更新于 2022.04.28 ·
8317 阅读 ·
2 点赞 ·
6 评论 ·
36 收藏

Five reasons to embrace Transformer in computer vision/在计算机视觉领域拥抱Transformer的5条理由

翻译自微软亚洲研究院官网文章Five reasons to embrace Transformer in computer vision 2021.12.5人工智能的统一建模故事“大一统模型”是许多学科的共同目标。例如,在物理学领域,科学家长期以来一直在追求大一统理论,这是一种可以用来解释不同力之间相互作用的单一理论。人工智能领域也有类似的“统一”目标。在当前的深度学习浪潮中,我们朝着实现团结的目标迈出了一大步。例如,对于新的人工智能任务,我们通常遵循相同的过程:收集数据、标记数据、定义网络架构,以及训
翻译
博文更新于 2022.04.13 ·
589 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

numpy手撕逻辑回归分类MNIST公式+代码

简介逻辑回归虽然顶着一个回归的名称,但是实际上做的是分类的事情。回归的一般形式可以表示为:f(x)=wx+bf(x)=wx+bf(x)=wx+b然而,分类任务的最终结果是一个确定的标签值,逻辑回归的输出范围为[-∞,+∞],需要使用Sigmoid函数将输出Y映射为一个[0,1]之间的概率值,再根据设定的阈值分类出正样本和负样本,比如>0.5作为正样本,<0.5的作为负样本逻辑回归在周志华的西瓜书中被称作对数几率函数,为了让模型去预测逼近y的衍生物,按照我的理解就是从线性推广到非线性的情况,
原创
博文更新于 2021.10.29 ·
1032 阅读 ·
3 点赞 ·
0 评论 ·
12 收藏

如何理解Python中的深拷贝与浅拷贝/可变对象/不可变对象

深拷贝与浅拷贝需要先理解什么是可变对象和不可变对象:可变对象与不可变对象的区别在于对象本身是否可变。https://zhuanlan.zhihu.com/p/34395671https://cloud.tencent.com/developer/article/1796730python内置的一些类型中可变对象:list dict set不可变对象:tuple string int float bool可变对象>>> a = [1, 2, 3]>>&g
原创
博文更新于 2021.10.28 ·
568 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

mmdetection环境配置与训练自己的VOC数据集

mmdetection环境安装requirementsLinux或者macOSPython 3.6+PyTorch 1.3+CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)GCC 5+MMCV建议最好用Linux系统,Windows环境下坑特别多,不建议使用,填坑环节过于繁琐且费事。安装必要的环境和库官方安装教程:https://mmdetection.readthedocs.io/en
原创
博文更新于 2021.06.27 ·
1433 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

通过Backprop计算CNN的感受野

翻译自https://learnopencv.com/cnn-receptive-field-computation-using-backprop/Introduction在上一篇文章中,我们学习了如何对任意大小的图像进行分类,并可视化网络的响应图。图1:“camel”类激活的边界框。改图来自我们之前的文章,标题是完全卷积图像分类。在图1中,请注意骆驼的头部几乎没有高亮显示,而响应图包含大量的沙子纹理。边界框也明显关闭。有点不对劲。我们使用的ResNet18网络非常精确,事实上它能正确地对图像
翻译
博文更新于 2021.06.19 ·
527 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

深度学习中常见的LOSS函数及代码实现

Introduction训练深度学习模型地目的只有一个,尽可能地学习到训练数据的分布。像往常地考试一样,考试成绩会有一个分数作为评判标准,评价你对于知识点地掌握情况,以便后续针对性地去学习。深度学习也一样,需要一个数值对训练的效果进行评价。在有监督学习中,这个数值也就是评价标准被称作loss值,即损失值。对于给定的输入xxx,对应标签值为yyy。定义深度学习模型的映射为f(x;θ)f(x;\theta)f(x;θ)。输出的预测值为y^\hat{y}y^​,损失函数LossLossLoss是用来计算便签值
原创
博文更新于 2021.06.18 ·
4257 阅读 ·
3 点赞 ·
5 评论 ·
8 收藏

深度理解感受野(一)什么是感受野?

IntroductionCNN用分布式的代码去表示目标经典目标检测和最新目标跟踪都用到了RPN(region proposal network),锚框(anchor)是RPN的基础,感受野(receptive field, RF)是anchor的基础。本文介绍感受野及其计算方法,和有效感受野概念什么是感受野?感受野与视觉感受野(receptive field)这一概念来自于生物神经科学,是指感觉系统中的任一神经元,其所受到的感受器神经元的支配范围。感受器神经元就是指接收感觉信号的最初级神经元视
原创
博文更新于 2021.05.27 ·
50013 阅读 ·
74 点赞 ·
3 评论 ·
399 收藏

实战:使用Faster R-CNN完成肺结节检测(LUNA16)(1)/LUNA16数据集初探

LUNA16LUNA16,全称Lung Nodule Analysis 16。该数据集来自另一个更大的数据集LIDC-IDRI,旨在推动更多计算机视觉领域的SOTA算法用于CAD领域。比赛共分为两个部分结节区域检测:确定每个疑似结节的区域,并给他们一个概率值假阳性减少:对提取出的区域进行分类,类别为是或者不是一个真实结节LUNA16数据集数据集的由来LUNA16由LIDC-IDRI数据集筛选而来,LIDC-IDRI它包括1018个低剂量的肺部CT影像。LUNA16排除了其中切片厚度大于2.
原创
博文更新于 2021.05.18 ·
6971 阅读 ·
8 点赞 ·
2 评论 ·
82 收藏

PIL读取图片转numpy格式并用matplolib显示

导入库import osimport nunpy as npfrom PIL import Imagefrom matplotlib import pyplot as pltos.listdir()----------------------------OUT---------------------------['1.png']用PIL读取图片im = Image.open('1.png')----------------------------OUT---------------
原创
博文更新于 2021.05.17 ·
1176 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏

conda安装第三方包找不到包的地址解决方法

用conda下载第三方包经常出现,在默认源的资源列表里找不到对应的包,大部分解决方法就是换成国内镜像源,然而因为某些原因换了源之后还是无法找到对应包的url按照我的经验,对应源没有想要安装的包是一方面,但有些时候网络抽风也是一方面原因可以尝试手动下载对应的安装包,放到对应环境的目录下从https://www.lfd.uci.edu/~gohlke/pythonlibs/这个网站可以下到各种安装包,然后放到环境目录下,比如我的目录就是C:\Users\Administrator\anaconda3\en
原创
博文更新于 2021.05.16 ·
3903 阅读 ·
2 点赞 ·
1 评论 ·
14 收藏

用Pandas记录10次5折交叉验证的结果并求平均值写入csv文件中

Introduction最近在训练一个病灶区域的分类模型,代码用的是MedMNIST。先是把MRI图像中的病灶区域抠出来保存成图片,然后resize到28*28的大小,再制作成.npz格式的数据集送入模型中进行训练并分类。按照5-folds-cross-validation 的方法,把数据集分成了5个部分,因为.npz格式的特殊性,label和image必须在ndarray中的索引值一一对应上,所以在选取val-sets时只得按照步长来选取图片作为验证集,每隔10step选取一张图片。从最终实验结果来
原创
博文更新于 2021.05.06 ·
1992 阅读 ·
2 点赞 ·
4 评论 ·
5 收藏

使用NumPy和PyTorch实现反卷积/转置卷积操作

前言转置卷积又被称为反卷积和逆卷积,但是转置卷积才是最正规和主流的叫法,在主流的深度学习框架中,转置卷积的函数名都是conv_transpose因为转置卷积的运算过程很容易让人误解,举一个例子,一个4*4的输入经过3*3的卷积核(stride=1,padding=0)输出为2*2,而转置卷积将这个输出当作输入,即一个2*2的输入经过3*3的转置卷积核输出为4*4,看起来很像是卷积的逆操作,但事实并不是一个逆过程的概念转置卷积用公式可以更好的说明转置卷积与逆卷积的不同卷积运算可以这么表示:y=Cx
原创
博文更新于 2021.04.24 ·
1027 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

PyTorch手动初始化卷积层并进行卷积运算报数据类型错误Expected object of scalar type Double but got scalar type Float for arg

Expected object of scalar type Double but got scalar type Float for argument #4 ‘bias’尝试脱离nn.Module模块手动定义conv2d层,并对权重init和卷积运算X = torch.arange(1,17,dtype=float).reshape((1,1,4,4))K = torch.arange(1,10,dtype=float).reshape((1,1,3,3))conv = nn.Conv2d(in_
原创
博文更新于 2021.04.22 ·
393 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

用Numpy实现卷积和反卷积操作

import numpy as npbatch_size = 1stride = 1padding = "VALID"input_channel = 1input_size = 5output_channel = 1filter_size = 3output_size = 3input_np = np.reshape(np.arange(input_size*input_size, dtype="float32"),newshape=[input_size,input_size])pr
原创
博文更新于 2021.04.22 ·
795 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

如何寻找数据集?

如何寻找数据集?除了医疗领域之外,其他领域的数据集有时也很难获取,这就需要我们掌握一些常见的数据集搜集方法和常用资源。最近,Medium 上的一位博主介绍了多个常用的数据集获取来源:1 Awesome Data这是一个 GitHub 存储库,包含多个不同类别的数据集。链接:https://github.com/awesomedata/awesome-public-datasets2 Data Is Plural这是一个以电子表格形式展示的数据集资源,从 2015 年开始定期更新,最新一期是 20
原创
博文更新于 2021.04.21 ·
11697 阅读 ·
16 点赞 ·
0 评论 ·
153 收藏
加载更多