Blockbuster_drug
码龄8年
求更新 关注
提问 私信
  • 博客:184,571
    184,571
    总访问量
  • 47
    原创
  • 973
    粉丝
  • 28
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2017-09-11

个人简介:实践、分享、传播

博客简介:

Blockbuster_drug

查看详细资料
个人成就
  • 获得1,486次点赞
  • 内容获得167次评论
  • 获得1,437次收藏
  • 代码片获得21,093次分享
  • 博客总排名15,094名
  • 原力等级
    原力等级
    4
    原力分
    977
    本月获得
    12
创作历程
  • 14篇
    2025年
  • 34篇
    2024年
成就勋章
TA的专栏
  • 分子动力学模拟-MD-Amber
    1篇
  • 蛋白结构推理预测
    12篇
  • 推理模型
    2篇
  • 化学大模型介绍
    5篇
  • rDock系列
    3篇
  • UCSF DOCK系列
    8篇
  • LeDock系列
    2篇
  • 分子生成方法
    2篇
  • 高效计算基本配置
    5篇
  • 机器学习打分函数
    1篇

TA关注的专栏 12

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 0

兴趣领域 设置
  • 编程语言
    bash
  • 人工智能
    深度学习
  • 操作系统
    linuxubuntu
  • 开源
    github开源
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

37人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 帖子
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 帖子

  • 关注/订阅/互动

  • 社区

搜索 取消

NUS张阳课题组的新作 D-I-TASSER,多结构域蛋白预测CASP排名第一

D-I-TASSER是一种结合深度学习和物理模拟的蛋白质结构预测方法,在CASP15盲测中表现优于AlphaFold2/3。该方法通过DeepMSA2构建多序列比对,利用DeepPotential等神经网络预测残基接触/距离,结合蒙特卡洛模拟构建结构模型,并创新性地引入域拆分重组模块处理多域蛋白。基准测试显示其单域蛋白预测TM-score达0.870,比传统方法提升108%;在多域蛋白中比AlphaFold2高12.9%。本文提供官网的安装使用方法以及初步测试。
原创
博文更新于 2025.12.14 ·
973 阅读 ·
14 点赞 ·
0 评论 ·
15 收藏

Boltz-2:安装及用法,来自麻省理工和AI制药公司 Recursion 的结构与亲和力预测模型,解决小分子药物发现的关键问题

该AI模型由麻省理工学院计算机科学与人工智能实验室与上市AI制药公司Recursion一起开发,双方在Boltz-1的基础之上,通过改进和拓展性能而来。简单来说,Boltz 与 AlphaFold3 一样,均是一种全原子共折叠模型,它将蛋白质折叠或结构预测的概念扩展到DNA、RNA、配体中。该模型不仅可以预测分子相互作用的 3D 结构,还可用于分子设计等下游任务。Boltz-2将亲和力预测与结构建模相结合,提高了预测结构的物理真实感。Boltz-2 在一个大型数据集上进行了训练,该数据集结合了500。
原创
博文更新于 2025.11.12 ·
2909 阅读 ·
27 点赞 ·
0 评论 ·
17 收藏

BoltzGen: 安装与使用,来自MIT团队生成式人工智能开源模型用于大分子binder设计

本文汇总介绍了MIT团队带来的开源AI项目BoltzGen的原理和conda环境配置、命令行参数说明和简单使用体验。该项目完全开源,提供完整的模型权重、训练代码和使用工具链,包括和结果分BoltzGen是一种创新的全原子生成式扩散模型,专为设计蛋白质、肽和核酸结合剂而开发。该模型统一了结构预测和分子设计,支持针对各类生物靶标(包括蛋白质、核酸和小分子)的高亲和力结合剂生成。BoltzGen已通过大规模实验验证,成功设计出针对多种新型靶标的纳米抗体、微型蛋白等结合剂。
原创
博文更新于 2025.11.12 ·
1122 阅读 ·
14 点赞 ·
0 评论 ·
11 收藏

OmegaFold:蛋白结构预测深度神经网络模型安装、使用

OmegaFold的工作原理是将蛋白质的序列输入到一个深度神经网络模型中,该模型经过训练可以从序列中学习到蛋白质的结构信息。模型使用的是大量已知结构的蛋白质数据进行训练,并通过比对已知结构与预测结构之间的相似性来评估预测结果的准确性。
原创
博文更新于 2025.11.12 ·
2182 阅读 ·
8 点赞 ·
8 评论 ·
9 收藏

AF3Complex:AlphaFold3改进版本用于蛋白复合物结构预测,详细安装及用法

本文介绍了AF3Complex在Linux Ubuntu的详细安装过程及使用记录。AF3Complex在AlphaFold 3的基础上进行了多项关键改进,使其在蛋白质复合物结构预测方面表现优异。AF3Complex不仅继承了先前AF2Complex的改进,还增加了一种新颖的排除配体的方法,使其在多种蛋白质复合物结构预测任务中显著优于AlphaFold 3。
原创
博文更新于 2025.11.12 ·
606 阅读 ·
25 点赞 ·
0 评论 ·
8 收藏

SimpleFold:苹果公司基于Transformer架构的蛋白质折叠开源模型,安装与体验

本文提供了苹果公司推出的开源蛋白结构折叠生成模型-SimpleFold的文章介绍、Linux系统下的安装及简单试用体验。SimpleFold是一种基于流匹配的新型蛋白质折叠生成模型,摒弃了传统方法中的多序列比对、成对表示和三角更新等复杂架构设计。该模型采用通用Transformer主干网络,通过简化架构实现高效结构预测,并支持从100M到3B不同规模的参数配置。实验表明,SimpleFold在CAMEO22和CASP14基准测试中性能接近甚至超越现有方法,同时显著降低了计算复杂度。
原创
博文更新于 2025.11.12 ·
2065 阅读 ·
41 点赞 ·
0 评论 ·
33 收藏

ESMFold conda安装、使用及与AlphaFold的简单比较

ESMFold 是一款由 Meta AI 团队开发的高精度蛋白质结构预测工具。相较于其他蛋白质结构预测方法,例如 AlphaFold2 和 RoseTTAFold,ESMFold 具备更快的预测速度。(1)ESMFold官方提供安装指引较为繁琐,本文提供了conda版本的快速便捷安装方法。(2)通过案例介绍ESMFold单个结构序列和批量结构序列的预测方法。
原创
博文更新于 2025.11.05 ·
11121 阅读 ·
41 点赞 ·
29 评论 ·
64 收藏

面向化学领域大模型能力的多层次多维度评估框架 ChemEval

ChemEval 的开发基于一个核心理念:需要一个能够全面评估 LLMs 在化学领域能力的基准测试,它不仅能考察大模型对化学基础知识的掌握,还能评估在高级化学概念方面的理解和应用。目前尽管已经存在一些基准测试,如 MMLU 涵盖了包括化学在内的多个领域共 57 项测评任务,但这些测试大部分仅仅面向基础概念的问答,缺乏对化学领域更深层次能力的评估。在这项研究中建立了一个名为 ChemEval 的基准,专门用于评估化学领域内的大语言模型能力,以填补当前化学领域缺乏多层级、多维度任务体系测评基准的空白。
原创
博文更新于 2025.04.12 ·
1325 阅读 ·
23 点赞 ·
1 评论 ·
12 收藏

跨模态化学材料大模型ChemDFM-X

本文介绍了首次提出的一种面向化学材料领域的跨模态通用大模型 ChemDFM-X。
原创
博文更新于 2025.04.12 ·
985 阅读 ·
25 点赞 ·
0 评论 ·
19 收藏

IBM推出专用于化学领域的大模型SMI–TED

2024年12月,IBM推出化学大模型SMI-TED(SMILES-based Transformer Encoder-Decoder):可精准预测分子性质和行为,标志着化学分子预测领域的一项重要技术进展。huggingface开原链接:核心架构:SMI-TED 的技术核心在于其深度双向变压器编码器架构。通过对 SMILES 字符串的精准解析,能够理解分子间复杂的关系。编码器负责将输入的分子信息转换为潜在的表征形式,解码器则根据这些信息逐步生成 SMILES 字符串,确保生成的分子信息准确且连贯。
原创
博文更新于 2025.04.12 ·
1110 阅读 ·
23 点赞 ·
0 评论 ·
21 收藏

首个开源多模态化学大模型ChemVLM-从化学图片到化学文本信息

本文提出了ChemVLM,这是首个面向化学领域的开源多模态大型语言模型,旨在解决化学图像理解与文本分析之间的不兼容问题。该模型基于VIT-MLP-LLM架构,采用ChemLLM-20B作为基础大型模型,使模型在理解和利用化学文本知识方面具备了强大的能力。
转载
博文更新于 2025.03.26 ·
706 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

首个开源科学大模型“浦科化学”-ChemLLM

转载介绍 首个开源科学大模型“浦科化学”-ChemLLM。这是一个全面的框架,特点是第一个专门针对化学领域的LLM(大型语言模型)。它还包括ChemData,一个专门为指令微调设计的dataset(数据集),以及ChemBench,一个涵盖九个基本化学任务的强大基准测试。ChemLLM擅长在化学学科中执行各种任务,并具有流畅的对话互动。值得注意的是,ChemLLM在核心化学任务上取得了与GPT-4相当的结果,并且在一般场景下表现出与相似大小的LLMs相当的竞争力。
原创
博文更新于 2025.03.26 ·
2034 阅读 ·
23 点赞 ·
1 评论 ·
7 收藏

Amber 16 Reference Manual 官方软件说明书

发布资源 2025.03.24 ·
pdf

Amber16+分子模拟与计算化学的软件+生物分子(如蛋白质、核酸)的动态模拟+药物设计+膜蛋白研究及能量计

发布资源 2025.03.24 ·
bz2

AmberTools17+分子模拟与计算化学+Amber分子动力学软件套件的重要组成部分+用于生物分子和生物大

发布资源 2025.03.24 ·
bz2

openmpi-1.10.0, 是一种开源的高性能消息传递接口(MPI)实现,属于高性能计算技术领域 它用于分布式内存系统中的并行计算,支持多种操作系统和网络互联

发布资源 2025.03.24 ·
gz

Amber 14 Reference Manual-官方软件说明书

发布资源 2025.03.24 ·
pdf

Amber14 是一款用于分子模拟与计算化学的软件 它主要用于生物分子(如蛋白质、核酸)的动态模拟、药物设计、膜蛋白研究及能量计算等 支持 GPU 加速、QM/M等

发布资源 2025.03.24 ·
bz2

AmberTools14属于分子模拟与计算化学技术领域,是Amber分子动力学软件套件的重要组成部分 它主要用于生物分子和生物大分子的模拟与计算研究

发布资源 2025.03.24 ·
bz2

分子动力学软件包Amber24的安装

Amber24 软件包在 AmberTools24 基础上添加了pmemd 程序,该程序类似于AmberTools 中的sander(分子动力学)代码,但在多个 CPU 上提供了(更)更好的性能,并在 GPU 上显著提高了速度。在机器上有安装多块GPU时,可以编译GPU并行版本(即调整 -DMPI=TRUE -DCUDA=TRUE ),实际使用中并不能带来显著的提升,不再展示安装效果。CPU串行版安装是基本配置,将不会安装支持并行的程序,即.MPI的后缀程序,适用于不强制使用CPU并行的场景。
原创
博文更新于 2025.03.22 ·
3601 阅读 ·
23 点赞 ·
1 评论 ·
36 收藏
加载更多