个人成就
-
获得601次点赞
-
内容获得173次评论
-
获得2,747次收藏
-
代码片获得5,130次分享
-
博客总排名10,843名
-
TA的专栏
-
系统学习卷积神经网络
14篇 -
mysql 6篇 -
运维 5篇 -
LLM 1篇 -
prompt engineer 1篇 -
前端 4篇 -
听报告 2篇 -
Python刷Leetcode 135篇 -
Python刷剑指offer 82篇 -
备忘 1篇 -
Git 4篇 -
Python刷面试题 12篇 -
笔记 2篇 -
读论文 3篇 -
知识图谱 7篇 -
html 3篇 -
spring boot 3篇 -
pytorch 3篇 -
bert 2篇 -
torch 4篇 -
Faiss 2篇 -
conda 7篇 -
windows 7篇 -
neo4j 7篇 -
概率与统计 1篇 -
系统学习机器学习方法
14篇 -
shell 3篇 -
设计模式 1篇 -
Vim 1篇 -
dbp 1篇 -
神经网络 1篇 -
编程工具 1篇 -
产品 1篇 -
问答 -
工具 1篇 -
搜索引擎 1篇 -
py2neo 1篇 -
Js 5篇 -
有趣的深度学习应用 2篇 -
Vue 5篇 -
Python排序算法 1篇 -
源方法
5篇 -
github 7篇 -
c++ 13篇 -
ros 10篇 -
linux 19篇 -
python 69篇 -
机器学习 43篇 -
hexo 1篇 -
JAVA 6篇 -
markdown语法 2篇 -
ubuntu 25篇 -
opencv 6篇 -
论文笔记 31篇 -
caffe 15篇 -
tensorflow 12篇 -
slam的原理 5篇 -
anaconda 10篇 -
计算机视觉 7篇 -
源方法 6篇 -
杂记 5篇 -
深度学习 13篇 -
深度学习专题 2篇 -
caffe2从头学 16篇 -
NLP 19篇 -
算法笔试题 5篇 -
每日BUG 2篇 -
笔试题 3篇 -
leetcode 31篇 -
百面机器学习笔记 2篇 -
牛客网剑指offer刷题 76篇 -
Python自然语言处理 9篇 -
AllenNLP 10篇
TA关注的专栏 7
TA关注的收藏夹 0
TA关注的社区 0
TA参与的活动 1
创作活动更多

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨
28人参与 去参加
- 最近
- 文章
- 专栏
- 代码仓
- 资源
- 收藏
- 关注/订阅/互动
更多


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频

搜索 取消
摘要:本文解释macro-F1/micro-F1及head/tail类指标的含义。micro-F1反映整体精度,受大类主导;macro-F1衡量类间公平性,平等对待长尾类。建议同时报告二者:micro评估实用性,macro评估对稀有类的公平性。在长尾数据中,还可拆分head/tail类指标,分别评估模型对多数类和少数类的表现。对于前3类占70%的数据,macro-F1和tail指标更能反映模型改进效果。最终应结合micro/macro及head/tail指标全面评估模型性能。




















