IT风投与中国

风险投资作为推动高新技术产业发展的重要力量,对于IT产业尤其重要。它通常需要7至10年的周期来实现投资回报,偏好发展迅速、产能高的行业,如IT业。近年来,随着VR技术和人工智能的发展,IT行业再次成为风投的热点。

  风险投资,简称风投,是一种通过产权流动活动投资回报的投资方式。

  由于风险投资属于股权投资的一种,所以收益周期一版较长。其中,创业期的风险投资通常在7~10年内进入成熟期,之后的后续投资又需要3~5年左右才能真正看到收益。因此,为了尽快获得投资回报,风投企业会优先选择发展迅速、产能较高的高新技术产业,毫无疑问,IT产业就是这样一块诱人的大蛋糕。也正是基于这样的原因,2006年首次掀起了一场IT吸金的狂潮。

  近年来,IT行业的风投热度依旧,因为VR技术、人工智能技术的发展,使其又迎来了新一轮风投企业的高度青睐。


  我们知道,一个国家或地区风险投资的好坏,在某种程度上直接关系到这个国家或地区高新技术的发展水平,并进而在一定程度上影响该国和该地区的经济实力和国际竞争力。因此,风投行业的重要性是不言而喻的。对中国来说,也是如此,我国近些年来尽管在高新技术领域屡有突破,但在整体上与国际领先水平还是有差距的,但在风投企业的推动下,不仅引入了民间细小资金流的支持,还在某种程度上为行业增加了竞争力,加速了行业发展,好处显而易见。

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值