网络度相关性的深入剖析
在网络分析中,度相关性是一个关键概念,它能帮助我们理解网络中节点连接的模式和特性。下面将详细介绍度相关性的相关内容,包括结构截断、 assortative 和 disassortative 网络的特点、rich - club 行为以及 Newman 相关系数等。
1. 结构截断与度相关性基础
在研究网络度相关性时,我们先从结构截断的概念入手。对于网络中节点对的度 (k) 和 (k’),定义了一个比率 (R_{kk’}):
[R_{kk’} = \frac{\langle k\rangle Np_{kk’}}{N_kN_{k’}} = \frac{\langle k\rangle p_{kk’}}{Np_kp_{k’}}]
根据定义,对于任意的 (k) 和 (k’),(R_{kk’}) 必须小于或等于 1。我们可以定义一个结构截断 (k_{struct}^{max}),它是满足 (R_{kk’}\leq1) 对所有 (k’) 都成立的最大度 (k) 的值。
在不相关网络的情况下,联合分布可以分解为 (p_{kk’}=q_kq_{k’}),此时 (R_{kk’}) 可以简化为:
[R_{kk’} = \frac{\langle k\rangle q_kq_{k’}}{Np_kp_{k’}} = \frac{kk’}{\langle k\rangle N}]
当 (k = k’ = k_{struct}^{max}) 时,(R_{kk’}) 取得最大值,由此可以得到不相关网络的结构截断条件:
[\frac{(k_{struct}^{max})^2}{\langle k\rangle N}=1]
超级会员免费看
订阅专栏 解锁全文

6万+

被折叠的 条评论
为什么被折叠?



