图节点中心性的最短路径度量方法解析
在图论和网络分析中,节点的中心性是衡量节点在网络中重要性的关键指标。除了基于节点度的中心性度量方法外,基于最短路径的中心性度量方法也具有重要意义。本文将详细介绍几种基于最短路径的中心性度量方法,包括接近中心性、中介中心性和增量中心性,并探讨如何比较不同中心性度量方法产生的节点排名。
1. α - 中心性
α - 中心性的定义如下:
[
c_{\alpha} = \frac{1}{1 - \alpha^4}
\begin{pmatrix}
1 + 2\alpha + \alpha^2 + \alpha^3 \
1 + \alpha + 2\alpha^2 + \alpha^3 \
1 + \alpha + \alpha^2 + 2\alpha^3 \
1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 \
1
\end{pmatrix}
]
对于任何 (0 \leq \alpha < 1) 的值,都有 (c_1 > c_2 > c_3 > c_4 > c_5)。α - 中心性在处理非连通图时是一个很好的选择,并且在某些情况下,节点的排名可能会随着 α 值的变化而改变。
2. 基于最短路径的中心性度量方法概述
在考虑基于最短路径的中心性度量方法之前,我们需要能够在图中找到最短路径。广度优先搜索(BFS)算法是一种计算从给定源节点到图中所有其他节点最短路径的最优算法。该算法不仅存储最短路径的长度,还记录最短路径上节点的精确序列。对于最短路径不唯一的情况,
超级会员免费看
订阅专栏 解锁全文

45

被折叠的 条评论
为什么被折叠?



