图论与中心性度量:网络分析的核心基础
图论基础
图论是一门历史悠久且研究广泛的数学分支,它是理解复杂网络的第一大支柱。在网络分析中,我们从图的基本定义出发,了解到图有多种类型,包括无向图、有向图、加权图和二分图。这些不同类型的图对于准确描述现实世界网络的丰富性和多样性至关重要。
- 图的基本属性 :节点的基本属性之一是度,它描述了与该节点相连的边的数量。此外,节点对之间还存在连通性等属性。我们还探讨了遍历图中节点和边的不同方法,以及如何用矩阵或边列表来描述图。
- 实际应用案例 :以儿童友谊网络为例,展示了如何将现实场景转化为图进行分析。
图论相关问题探讨
以下是一些与图论相关的问题,这些问题有助于加深对图的理解和应用。
1.1 什么是图?
- 地理图转化为图 :考虑美国的地理地图,绘制出哪些州有共同边界的图。这个图与社交熟人图和其他示例图在某些方面存在差异。
- 四色定理验证 :四色定理表明,平面上的任何地图都可以只用四种颜色着色,使得相邻的国家颜色不同。可以验证欧洲和美国的地理地图是否符合这一定理。
- 正多面体的图构建 :正多面体(柏拉图立体)包括四面体、六面体(立方体)、八面体、十二面体和二十面体。分析这些正多面体顶点之间的连通性,并构建相应的图。
超级会员免费看
订阅专栏 解锁全文

33

被折叠的 条评论
为什么被折叠?



