15、数值计算在工程问题中的应用与实践

数值计算在工程问题中的应用与实践

1. 引言

在工程领域,许多问题都可以通过数学模型进行描述,而这些数学模型往往涉及到微分方程的求解。本文将介绍不同编程语言(如 FORTRAN、QuickBASIC、MATLAB、Mathematica)在解决工程问题(如膜问题、梁的挠度问题)中的应用,同时还会涉及到 Runge - Kutta 方法和有限差分法的具体实践和相关问题。

2. 不同语言版本的程序应用

2.1 FORTRAN 版本

以膜问题为例,考虑一个膜的变形问题。设内半径 $R_i = 3$ 英寸,径向增量 $\Delta R = 0.5$ 英寸,两边界之间的站点数 $N = 11$,则外半径 $R_o = R_i+(N + 1)\Delta R=3 + 12\times0.5 = 9$ 英寸。若张力 $T = 100$ 磅/英寸,压力 $p = 5$ 磅/平方英寸,可相应地在程序 OdeBvpFD 中编写函数子程序 RI。

2.2 QuickBASIC 版本

同样处理膜问题,QuickBASIC 版本有一个 COMMON SHARED 语句,允许在子程序中共享 $N$ 的值,并且该版本可扩展到求解多达 119 个站点的问题。

对于简支梁在自重作用下的问题,当 $w_m = w_e=-2$,均匀的 $EI$ 值等于 1(即梁具有均匀的横截面且无空心端部),$L = 100$,$\Delta x = 30$,支撑之间的站点数 $N = 9$ 时,可根据方程 24 到 26 编写子程序 CIJ 和 RI。

需要注意的是,函数 CIJ 的参数 $

【EI复现】基于主从博弈的新型城镇配电系统产消者竞价策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于主从博弈理论的新型城镇配电系统中产消者竞价策略的研究,结合IEEE33节点系统,利用Matlab进行仿真代码实现。该研究聚焦于电力市场环境下产消者(既生产又消费电能的主体)之间的博弈行为建模,通过构建主从博弈模型优化竞价策略,提升配电系统运行效率经济性。文中详细阐述了模型构建思路、优化算法设计及Matlab代码实现过程,旨在复现高水平期刊(EI收录)研究成果,适用于电力系统优化、能源互联网及需求响应等领域。; 适合人群:具备电力系统基础知识和一定Matlab编程能力的研究生、科研人员及从事能源系统优化工作的工程技术人员;尤其适合致力于电力市场博弈、分布式能源调度等方向的研究者。; 使用场景及目标:① 掌握主从博弈在电力系统产消者竞价中的建模方法;② 学习Matlab在电力系统优化仿真中的实际应用技巧;③ 复现EI级别论文成果,支撑学术研究或项目开发;④ 深入理解配电系统中分布式能源参市场交易的决策机制。; 阅读建议:建议读者结合IEEE33节点标准系统数据,逐步调试Matlab代码,理解博弈模型的变量设置、目标函数构建求解流程;同时可扩展研究不同市场机制或引入不确定性因素以增强模型实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值