5、曲线拟合方法与程序实现

曲线拟合方法与程序实现

1. 引言

在工程实验中,工程师们会在实验室收集数据。为了有效利用这些数据,常常需要用特定的曲线对其进行拟合。例如,可能需要找到一个抛物线方程 $y = c_1 + c_2x + c_3x^2$ 来通过三个给定的点 $(x_i,y_i)$($i = 1,2,3$),这就是精确曲线拟合问题。

有时,已知三个点本应落在一条直线上,但由于测量设备校准不佳或测试环境存在噪声等原因,它们并不在同一直线上。若要用直线方程 $y = c_1 + c_2x$ 来表示金属棒在弹性范围内拉伸试验收集的应力 - 应变数据,就需要确定系数 $c_1$ 和 $c_2$,而最小二乘法是常用的准则之一。

如果收集的数据代表时间的正弦函数,可假设曲线为 $x(t) = c_1\sin t + c_2\sin 3t + c_3\sin 5t + c_4\sin 7t$,通过线性组合 4 个奇数正弦项,并应用最小二乘法确定系数 $c_1 - c_4$。

对于一些特殊形式的曲线拟合,若能找到数学变换将曲线方程转化为线性方程,仍可应用最小二乘法准则。此外,三次样条方法也是常用的曲线拟合技术,它能导出平滑的三次方程,确保通过所有给定点时斜率和曲率连续。

接下来将讨论 ExactFit、LeastSq1、LeastSqG 和 CubeSpln 这四个程序的开发,以满足上述四种曲线拟合需求。

2. 精确曲线拟合

以找到通过三个给定点 $(x_i,y_i)$($i = 1,2,3$)的抛物线方程 $y = c_1 + c_2x + c_3x^2$ 为例,这是精确曲线拟合问题。将三个点代入抛物线方程可得:
$c_

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值