12、虚拟现实在建筑与景观设计中的应用探索

虚拟现实在建筑与景观设计中的应用探索

1. 初始现实:建筑设计与虚拟现实的融合

1.1 研究背景与目标

研究聚焦于建筑设计、沉浸体验和虚拟环境设计之间的潜在相互概念,旨在理解融合“活性”材料(连接物理与数字材料及过程的智能材料)的建筑设计产品的未来框架和类型。相关研究源于2014 - 2020年在伦斯勒理工学院建筑学院开展的实验设计工作室、研讨会和独立项目,探索了VR、AR、MR和XR结构/环境在沉浸式协作空间和VR中的应用。

1.2 体验场所对比

  • 协作式沉浸空间(CRAIVE实验室) :CRAIVE实验室是一个360°、39’x32’的视听投影室,位于RPI科技园区。在该实验室中创建的体验需要处理用户与屏幕之间的空间距离问题。与完全虚拟的环境相比,这里的体验在将用户身体带入体验的过程中存在一定挑战。
  • 独立感知的虚拟空间(VR) :在VR环境中,用户更容易通过虚构协议将身体融入体验,更轻松地与“模拟”进行互动。

1.3 设计方向

  • 控制视角 :虚拟空间/结构作为沉浸式体验和导航物理现实的场所,通过虚拟数据增强物理现实。例如,遗忘与控制室工作室设计“驾驶舱”以访问不适宜居住的景观;原型室和无常工作室则关注界面、透明度、交互性和性能,探索公共和机构空间、基础设施和治理的新逻辑。
  • 梦境状态(初始状态) :虚拟空间/结构是身体和心灵沉浸的投影,遵循新规则重新组合现实碎片。初始垂直工
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值