11、ALGOL 60与EL X8计算机的实现

ALGOL 60与EL X8计算机的实现

1. EL X8的特性

EL X8在数值计算方面具有显著优势。它采用的Grau表示法使得整数成为浮点数的真子集(当指数e = 0时),这一特性让EL X8能够直接计算包含整数和分数的表达式,无需进行数字转换。其算术运算的实现十分出色,加减乘除四则运算都能得到最接近数学精确结果的浮点值。

与之对比,EL X1没有具备相应操作的寄存器,所有计算都需通过软件完成。例如,计算10.3除以3.14,EL X1需要执行49条指令,耗时4066微秒,而EL X8仅需1条指令,耗时62.5微秒,速度快了65.1倍。

EL X8还有其他重要扩展特性:
- 通用扩展 :所有寄存器,包括指令计数器,都可作为索引寄存器使用。
- 面向语言的扩展
- 多数从存储器取值或向存储器存值的指令都有(非)堆栈变体。该变体使用寄存器B作为堆栈指针,在从堆栈取值时递减,在向堆栈存值时递增。特别是堆栈子程序调用,将返回链接数据写入堆栈,是一项重大创新。
- 引入了动态或两阶段寻址变体。在这种变体中,指令的操作数Mp[q]会被硬件解释为操作数M[[M[63] + p] + q]。
- 新增了执行指令,可将指令地址部分指向的存储字作为指令执行,这对实现ALGOL 60过程的参数机制非常有用。

2. ALGOL 60语言概述

ALGOL 60是由国际委员会开发的用于数值计算的编程语言。它完全抽象了所有硬件,引入了许多新概念,为编程语言的进一步发展奠定了基础。其最终定义由Peter Naur编辑,首次使用了John

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值