5、机器学习分类器:贝叶斯与最近邻方法解析

机器学习分类器:贝叶斯与最近邻方法解析

1. 贝叶斯分类器

1.1 核心原理

贝叶斯分类器通过为每个类别分别计算 $P(x|c_i)P(c_i)$ 的乘积,然后将示例 $x$ 标记为该乘积值最大的类别。这里的主要问题在于如何计算概率 $P(x|c_i)$,大多数情况下,通过假设各个属性相互独立来简化计算,此时 $P(x|c_i) = \prod_{j=1}^{n} P(x_j|c_i)$,其中 $n$ 是属性的数量。

1.2 数值示例

以下是一个包含三个连续属性的训练集示例:
| Example | at1 | at2 | at3 | Class |
| ---- | ---- | ---- | ---- | ---- |
| ex1 | 3.2 | 2.1 | 2.1 | pos |
| ex2 | 5.2 | 6.1 | 7.5 | pos |
| ex3 | 8.5 | 1.3 | 0.5 | pos |
| ex4 | 2.3 | 5.4 | 2.45 | neg |
| ex5 | 6.2 | 3.1 | 4.4 | neg |
| ex6 | 1.3 | 6.0 | 3.35 | neg |

我们要使用贝叶斯公式找出向量 $x = (9, 2.6, 3.3)$ 最可能所属的类别。策略是评估 $p_{pos}(x) \times P(pos)$ 和 $p_{neg}(x) \times P(neg)$。由于 $P(pos) = P(neg)$,所以若 $p_{pos}(x) > p_{neg}(x)$,则将 $x$ 标记为 pos,否则标

内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略效果评估体系,涵盖当前企业传播面临的预算、资源、内容效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户自媒体四类媒体资源的特性、传播优势发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放GEO优化,提升品牌在AI搜索中的权威性可见性;④通过数据驱动评估体系量化品牌影响力销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析工具指南进行系统学习,重点关注媒体适配性策略GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值