14、机器人搭建与TinyML应用开发指南

机器人搭建与TinyML应用开发指南

一、机器人搭建与测试

在开始搭建机器人后,测试是必不可少的环节。首先,要为机器人安装轮子,这是让机器人能够移动的基础步骤。完成轮子安装后,就可以对机器人进行测试了。

对于循线机器人和避障机器人,有相应的代码示例可供下载,分别是 line_following.py obstacle_avoidance.py 。在测试循线机器人时,可以使用 Kitronik 的垫子(链接:https://bit.ly/3GAn0xM )。

如果对机器人搭建感兴趣,还可以参加当地机器人俱乐部组织的比赛。常见的机器人比赛类型有迷宫求解机器人比赛、相扑机器人比赛等。比如 Micromouse 比赛,机器人需要在迷宫中找到回家的最短路径。你可以在 https://en.wikipedia.org/wiki/Micromouse 了解更多关于 Micromouse 比赛的信息。在美国,IEEE(电气与电子工程师协会)会在学生活动中举办地区性的 Micromouse 比赛。

二、TinyML 应用开发

TinyML 即 Tiny Machine Learning,是一个新兴且不断发展的领域,它利用机器学习工具在资源受限的硬件(如 RP2040 微控制器)上解释传感器数据。与拥有强大处理能力和 GPU 的服务器相比,微控制器的内存和处理能力有限,而 TinyML 可以让由硬币电池供电的微控制器实现数据解释。能够使用 TinyML 工具在本地解释传感器数据,而无需将数据上传到云端的设备被称为边缘设备。

1. 技术要求

开发 Ti

【EI复现】基于主从博弈的新型城镇配电系统产消者竞价策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于主从博弈理论的新型城镇配电系统中产消者竞价策略的研究,结合IEEE33节点系统,利用Matlab进行仿真代码实现。该研究聚焦于电力市场环境下产消者(既生产又消费电能的主体)之间的博弈行为建模,通过构建主从博弈模型优化竞价策略,提升配电系统运行效率经济性。文中详细阐述了模型构建思路、优化算法设计及Matlab代码实现过程,旨在复现高水平期刊(EI收录)研究成果,适用于电力系统优化、能源互联网及需求响应等领域。; 适合人群:具备电力系统基础知识和一定Matlab编程能力的研究生、科研人员及从事能源系统优化工作的工程技术人员;尤其适合致力于电力市场博弈、分布式能源调度等方向的研究者。; 使用场景及目标:① 掌握主从博弈在电力系统产消者竞价中的建模方法;② 学习Matlab在电力系统优化仿真中的实际应用技巧;③ 复现EI级别论文成果,支撑学术研究或项目开发;④ 深入理解配电系统中分布式能源参市场交易的决策机制。; 阅读建议:建议读者结合IEEE33节点标准系统数据,逐步调试Matlab代码,理解博弈模型的变量设置、目标函数构建求解流程;同时可扩展研究不同市场机制或引入不确定性因素以增强模型实用性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值