基于机器学习的日本脑炎症状预测
1. 引言
日本脑炎是一种严重的公共卫生问题,准确预测其感染强度(Force of Infection,FOI)对于控制病毒传播至关重要。本文运用多种机器学习算法,包括决策树、随机森林、AdaBoost和梯度提升、支持向量机、逻辑回归、朴素贝叶斯、K近邻、卷积神经网络等,对日本脑炎的症状进行预测。
2. 相关研究
- 风险因素 :日本脑炎病毒传播与多种风险因素相关,如湿地作物(水稻)向旱地作物的转变、畜牧业(养猪和养鸭)、鸟类保护区或公园的存在、降雨量、温度和气候等。
- 生态位建模 :研究人员使用生态位建模来估计日本脑炎病毒在亚洲的分布。通过Maxnet程序,结合降雨量、海拔、温度和蚊子分布图等输入,构建生态位模型,以确定适合三带喙库蚊(Cx. Tritaeniorhynchus)生长的环境条件。
3. 提出的工作
- 数据获取与预处理
- 数据来自Github,由Duy M. Nguyun和Quan M. Trans生成,最初为Rds.格式,使用R - Studio软件将其转换为.csv数据。
- 利用WEKA软件对日本脑炎病毒数据集进行预处理,包括标准化和归一化。数据集包含27个属性,均为数值类型,无缺失值,共701,307行。
- 19个生物气候变量由降雨量和温度推导而来,其他属性包括海拔、猪的数量、水稻分布、城乡类别、2015年调整后的人口数量、媒介分
超级会员免费看
订阅专栏 解锁全文


被折叠的 条评论
为什么被折叠?



