28、环境与工程地质基础:放射性废物处置与土地污染治理

环境与工程地质基础:放射性废物处置与土地污染治理

1. 放射性废物地质处置条件

放射性废物的安全处置是一个复杂且关键的问题,地质环境和工程屏障在其中起着至关重要的作用。

1.1 地质环境选择

地下水的运动以及岩石的溶解潜力是安全处置的重要方面。最佳的处置地质环境应是地下水循环极少或不存在的区域,因为地下水是将废物从储存库转移到生物圈的最可能途径。理想的地质系统应结合多种工程屏障,如废物容器、缓冲材料和回填物。例如,密封在金属罐中的放射性材料可以储存在地质稳定区域(即无火山活动、地震干扰风险最小且不太可能遭受严重侵蚀的区域)相对不透水岩石类型中挖掘的深层地下洞穴中,深层构造盆地可作为可能的选址。

1.2 地质条件要求
  • 应力与变形 :地下开挖引起的应力重新分布以及可能的热诱导应力不应危及相关岩体的平衡状态,在运营期间不应导致不可接受的收敛或支护损坏。必须确保岩体的长期完整性,因此需要确定储存库围岩中的应力和变形分布,这可能涉及考虑岩体的温度相关流变特性,并将其与承载能力进行比较。理想情况下,地下储存库设施的工程建设需要有足够的强度,特别是在维持地下洞口的完整性方面。
  • 岩石渗透性 :完全不透水的岩体不太可能存在,但许多岩石类型可被视为实际不透水,如大型火成岩地块、一些厚层沉积层序、变质岩和岩盐。岩体的渗透性主要取决于存在的不连续性、其宽度、填充物数量及其交叉情况。储存库需要防水,以防止放射性核素通过地下水迁移到地表,可能需要对地下水系统进行抽水试验和采用注入技术进行密封。
1.3 不同岩石类
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值