18、水资源管理与利用全解析

水资源管理与利用全解析

1. 水资源面临的问题

过度开采含水层会带来一系列问题。它会降低含水层的安全出水量,导致抽水扬程过高,由于可允许的水位降深受限而使出水量减少,还可能导致水质恶化。水质恶化通常是因为从含水层深处抽取了高度矿化的老水进入井中,或者是由于诱导入渗或海水入侵。这些问题可能需要减少井场的出水量,甚至放弃井场。此外,地下水位下降还可能导致沼泽和湿地的丧失,对农业和生态产生潜在的严重影响。

2. 人工补给

人工补给是指通过人工手段增加地下水储存的自然补给量。其主要目的是节约用水,其次是改善水质。它可用于减少超采、保护和改善地表径流,以及增加可用的地下水资源。进行人工补给的含水层必须有足够的储存能力,且补给的大部分水不应迅速排入附近河流而流失。

人工补给的水源可以是暴雨径流、河流或湖泊水、工业冷却水、工业废水或污水等。许多水源需要进行某种预处理。人工补给与地下水的相互作用可能导致沉淀,如碳酸钙、铁和镁盐的沉淀,从而降低渗透性,这在理想情况下应避免。

人工补给的方法有多种:
- 表面扩散法 :利用水池、沟渠或淹没区域,当含水层出露或接近地表时,可在大面积上增加入渗。但这种方法要求地面有高入渗能力,且要注意避免将土壤中的盐分和养分冲入地下水。在炎热干燥的气候地区,补给水源可能过度蒸发导致盐碱化。
- 喷灌法 :通过喷洒的方式将水补给到地下。
- 注入法 :通过垂直竖井、水平集水井、坑或沟渠将水注入地下。当要补给的含水层较深或为承压含水层,或者没有足够空间建造补给池时,常采用补给井。

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值