17、水资源相关知识详解

水资源相关知识详解

1. 土坝建设与地质条件

在进行土坝建设时,地质条件起着至关重要的作用。
- 冲积黏土层 :当冲积黏土层厚度不超过 2.3 米时,若覆盖排水垫层(尤其是位于砂和砾石之上),在施工期间会发生固结。而对于较厚的沉积层,可能需要在黏土层中设置垂直排水体,如带状排水体或砂井。
- 粗砂和砾石 :粗砂和砾石在荷载作用下的固结相对较小,是土坝的优良基础。但它们的主要问题是渗透性,冲积砂和砾石会在土坝或堆石坝较高部分下方形成天然排水垫层,因此必须截断坝下的渗流。
- 滑坡区域 :山区山谷中滑坡较为常见,大型滑坡常使山谷变窄,从地形上看似乎适合建坝。但除非滑坡较浅且可清除或有效排水,否则应避免在滑坡区域选址建坝,因为其不稳定特性可能导致施工期间或水库蓄水后发生移动。
- 断层区域 :断层带可能被破碎或压碎的物质填充,是薄弱区域,在为建坝进行挖掘时可能导致滑动。在活跃地震区域,断层不仅会在大型且不常发生的地震时移动,还会因小震动和连续滑动(即断层蠕动)而移动。在有活跃断层的地点可建造分区填筑坝,其设计应比稳定区域的填筑坝具有更高的超高、更宽的坝顶和更缓的坡度,以防止坍塌和滑动。分区坝的核心更宽,过滤区更大,并设有合适的过渡区。此外,在不同渗透特性的材料相对的地方都应设置过滤器,以确保在地震时若核心出现横向裂缝能控制渗漏。分区坝还应设置大型排水口,以便在紧急情况下快速降低水库水位。

2. 土坝建筑材料

土坝的建筑材料应尽可能从未来水库流域内获取。筑坝土料需具备高抗剪强度、低渗透性、低吸水

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值