22、z/VM系统管理与性能监控全解析

z/VM系统管理与性能监控全解析

1. 系统管理操作

1.1 LVM逻辑卷管理

在Linux系统中,LVM(逻辑卷管理)提供了灵活的磁盘空间管理方式。以下是一些常用的LVM操作命令:
- lvcreate :用于在卷组内创建逻辑卷。
- lvremove :从卷组中移除逻辑卷,建议仅在空卷或不再需要数据的卷上使用。
- lvextend :使用卷组中的未分配存储空间扩展逻辑卷。

若要扩展3GB的 /home 分区,可按以下步骤操作:
1. 以z/VM MAINT身份,将另一个3390 - 3 DASD附加到z/VM系统。
2. 同样以z/VM MAINT身份,在其上定义一个小磁盘并分配给Linux客户机。
3. 以Linux root身份,使用 vgextend 将其添加到卷组。
4. 还是以Linux root身份,使用 lvextend 利用新添加到卷组的存储空间扩展 /home 逻辑卷。

1.2 网络管理

1.2.1 SUSE Linux Enterprise Server 10(SLES 10)

若要在SLES 10中配置网络连接,可按以下步骤操作:
1. 确保Linux能识别设备,使用 lscss 命令检查:


                
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值