VZ_CCC
码龄12年
求更新 关注
提问 私信
  • 博客:32,741
    32,741
    总访问量
  • 23
    原创
  • 45
    粉丝
  • 43
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2014-04-08
博客简介:

u014610970的博客

查看详细资料
个人成就
  • 获得50次点赞
  • 内容获得22次评论
  • 获得127次收藏
  • 代码片获得138次分享
  • 博客总排名2,005,450名
  • 原力等级
    原力等级
    1
    原力分
    96
    本月获得
    0
创作历程
  • 2篇
    2024年
  • 1篇
    2023年
  • 6篇
    2022年
  • 14篇
    2020年
成就勋章
TA的专栏
  • C语言基础教程
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

兴趣领域 设置
  • 网络空间安全
    系统安全web安全
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

29人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

ADB连接手机进行软件触摸操作

简单的一个操作,解决一下自己的负担
原创
博文更新于 2024.12.18 ·
506 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

SSD固态硬盘删除文件基本无法恢复

ssd删除文件的特点
原创
博文更新于 2024.11.19 ·
804 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

VSCODE 无插件 C语言文件 注释添加

在输入框中输入snippets,选择Configure User Snippets。选择新建一个Global snippets,然后在新建的文件中,插入如下的格式代码,ctrl+shift+p 出现如下图。作者那块可以自己写成自己的名字。输入一个自己新建文件的名字,
原创
博文更新于 2023.05.06 ·
656 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MFC编写一个简单的端口扫描器

单线程的mfc端口扫描小工具。
原创
博文更新于 2022.11.01 ·
1070 阅读 ·
5 点赞 ·
0 评论 ·
12 收藏

ICMP协议探测记录

发送ICMP时间戳请求netwox 81 -i 192.168.59.135(targetIP)如果有回复就是:0 0如果没有回复就是:No answer.发送ICMP maskreq 请求使用icmpaddrmask.c文件(该文件为TCP\IP详解里面的例子)。编译后的文件,加上targetIP为参数,直接执行。如果目标主机允许探测就会将子网掩码回复回来。否则就会报其他的错误。(PS:此处的一个坑,在虚拟机中执行这些代码,始终都是timeout,后面将虚拟机的网络从NAT模式变成了
原创
博文更新于 2022.05.12 ·
613 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NESSUS使用笔记

Nessus 使用记录
原创
博文更新于 2022.05.11 ·
1008 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

SNMP协议学习

SNMP简单学习
原创
博文更新于 2022.05.11 ·
305 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

网络杂项信息记录

杂项
原创
博文更新于 2022.05.09 ·
625 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Nmap使用记录

Nmap使用记录nmap -p “*” -sS targetIP全端口半连接扫描指定地址。
原创
博文更新于 2022.05.09 ·
293 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达深度学习日记1

今天开始记录一下吴恩达的深度学习教学视频学习总结,之前虽然已经看过一次了但是并没有能够较为深入的理解视频里面的内容,今天就再次进行学习。今天的内容主要是听了logistic回归的部分:1、logistic回归其实就是一个"y=sigmoid(wx+b)"的一个式子,其实可以直接理解为一个一元一次函数,但是考虑到这个模型的用处在于做一个二分类,所以直接使用“y=wx+b”不一定可以满足要求,而加...
原创
博文更新于 2021.04.21 ·
179 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

saferwall搭建

官方给出的安装流程流程的连接放在这https://github.com/saferwall/saferwall/blob/master/docs/DEPLOYING-DEV.md开始自己的安装1、创建一个ubuntu 20.04的VM虚拟机安装虚拟机的方法百度上有很多,这里直接跳过这一步;系统安装好之后安装vmtool,百度的教程很多,同样也跳过;使用sudo passwd root命令获取root权限;将apt更新源更换成清华大学的源;进入root账户,使用apt-get update检查
原创
博文更新于 2020.12.23 ·
693 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

躲小球.rar

发布资源 2014.05.27 ·
rar

李宏毅机器学习笔记03(CNN部分)

一个Deep learning的3个步骤就是1、设计一个网络的框架2、找到你的Lossfunction3、使用梯度下降的方法找到框架中最好的参数为什么使用deep呢?老师使用数字电路的例子来进行比较,如果你使用一层的元器件来模拟所有的情况,是可以做到的,只是这个一层的器件会很多。但是如果你使用两层甚至是多层的起来来模拟所有的情况的话,可能就只需要一些器件就足以完成了。CNN:俗称卷积...
原创
博文更新于 2020.04.22 ·
481 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

李宏毅机器学习笔记02(logistic regression)

李宏毅老师的classification 一共讲了两种类型的方法。首先讲的是基于概率模型的(PS:在听这一讲的时候有点懵逼,之前听吴恩达老师这一部分的时候就是直接一个sigmoid函数,接liner model,就完成了,这个概率模型没有听过)这个模型的原理如下:根据概率计算出一个蓝色的球是属于box1的还是box2的。类比成分类。接下来是高斯分布模型,使用训练数据来寻找一个最适合的...
原创
博文更新于 2020.04.20 ·
320 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

李宏毅机器学习笔记01(梯度下降的一些内容)

在梯度下降中,learning rate是一个挺难选择的点:选择大一点的学习率:可以快速的下降,但是容易出现降过头的现象。选择较小的学习率:不容易错过极值点,但是迭代的时间太长。一种常见的想法:就是想着随着参数调整次数的增多,学习率应该越来越小 a = a/(t+1) t表示迭代的次数;但是最好的方式是每一个参数对应一个学习率,这样就引出了Adagrad。adagrad的式子如上。S...
原创
博文更新于 2020.04.17 ·
356 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

李宏毅深度学习课程作业hw1详解

2020年李宏毅老师的课程网址:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html李宏毅老师的2020课程内容,个人感觉非常的系统和全面,而且是从头开始,从最简单的开始,一步一步讲到最难的,所以也非常的推荐。下面开始第一课作业的范例讲解:题目是预测PM2.5的值代码部分:1、导入包import sysimport pandas...
原创
博文更新于 2020.04.15 ·
6796 阅读 ·
23 点赞 ·
19 评论 ·
73 收藏

吴恩达深度学习笔记04(第三周和第四周)

吴恩达深度学习视频的第三周和第四周主要的内容包括单隐层神经网络和多隐层神经网络的讲解。第二周的视频内容讲的是logistic回归,第三周的内容为单隐层神经网络,这两者之间的关系为组件与整体的关系。单隐层神经网络,顾名思义只有一个隐藏层,而这一个隐藏层有多个节点,每一个节点就是一个logistic回归的模型,所以3个节点的隐藏层便可以看作是由3个logistic回归模型组成的。如下图图中上面的...
原创
博文更新于 2020.04.12 ·
303 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C语言----创建一个hello world程序

不论在哪个语言的教程中第一个程序总是输出一个“Hello World!”。那么接下来我们就学习创建第一个程序。IDE:VS2019社区版(PS:)
原创
博文更新于 2020.04.02 ·
10155 阅读 ·
7 点赞 ·
3 评论 ·
18 收藏

吴恩达深度学习笔记03(第二周练习)

关于练习作业,首先贴一个连接吴恩达深度学习第二周作业练习在学习完第二周的课程以后,使用logistic回归判别一组猫的图片,数据集的话链接里面有百度网盘的下载地址。作业的话我直接将源码copy到notebook中运行,结果和链接中的结果完全一样。感受:作业代码自己想的话感觉不一定能够搞定,所以就先抄一下别人的代码。这里只要理解了吴恩达老师的第二周的视频中的内容的话,基本上代码里面的操作都是根...
原创
博文更新于 2020.04.02 ·
177 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达深度学习笔记02

今天的学习内容为logistic回归中的梯度下降法:当我们知道了logistic回归的模型和梯度下降的原理之后,就要将梯度下降的方法运用到logistic回归中。1、基本公式z=wx+by(预测) = a = sigmoid(z)L(a,y) = -(ylog(a) + (1-y)log(1-a))这三个公式分别是:第一个是logistic回归的模型公式,w是一个一维的向量,向量中参数...
原创
博文更新于 2020.03.31 ·
231 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多