u013250861
码龄12年
求更新 关注
提问 私信
  • 博客:7,168,420
    社区:15
    7,168,435
    总访问量
  • 4,791
    原创
  • 163
    排名
  • 15,818
    粉丝
  • 284
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
加入CSDN时间: 2013-12-23
博客简介:

u013250861的博客

查看详细资料
个人成就
  • 获得25,309次点赞
  • 内容获得656次评论
  • 获得39,124次收藏
  • 代码片获得92,013次分享
  • 原力等级
    原力等级
    9
    原力分
    18,672
    本月获得
    98
创作历程
  • 487篇
    2025年
  • 1875篇
    2024年
  • 647篇
    2023年
  • 1255篇
    2022年
  • 430篇
    2021年
  • 99篇
    2020年
成就勋章
TA的专栏
  • LLM
    付费
    148篇
  • LLM/数据处理&Tokenizer
    付费
    67篇
  • LLM/Transformer
    付费
    66篇
  • LLM/训练
    付费
    118篇
  • LLM/部署&推理
    付费
    89篇
  • LLM/评测
    付费
    43篇
  • LLM/经典模型
    付费
    45篇
  • LLM/Agent&RAG
    付费
    26篇
  • Audio
    付费
    69篇
  • Audio/ASR&TTS
    付费
    61篇
  • Audio/预训练模型
    付费
    10篇
  • VLM&VLA
    付费
    47篇
  • VLA(文⬌图⬌动作)
    付费
    35篇
  • VLM(声⬌文⬌图⬌视频)
    付费
    80篇
  • 机器学习/ML
    付费
    39篇
  • ML/经典模型
    付费
    26篇
  • ML/聚类(无监督)
    付费
    11篇
  • 异常检测(Abnomaly Detection)
    付费
    16篇
  • 知识图谱(Knowledge Graph)
    付费
    87篇
  • 图神经网络
    付费
    47篇
  • 评测指标
    1篇
  • RL/强化学习
    74篇
  • Omni/全模态
    8篇
  • NVIDIA
    3篇
  • 具身智能(Embodied AI)
    7篇
  • 梯度&优化器
    13篇
  • Loss/损失函数
    35篇
  • 自动驾驶
    4篇
  • 泛函&变分
    16篇
  • AI/模型蒸馏&量化
    21篇
  • AI/物联网
    13篇
  • 数学分析
    490篇
  • 高等代数
    82篇
  • 概率论与数理统计
    46篇
  • 复变函数论
    310篇
  • 实变函数论
    221篇
  • 泛函分析基础
    100篇
  • 泛函分析讲义
    98篇
  • Git
    8篇
  • 基础理论
    8篇
  • AI/模型训练
    43篇
  • NLP/自然语言处理
    32篇
  • NLP/词向量_预训练模型
    27篇
  • Bert系列
    33篇
  • NLP基础/分词
    11篇
  • NLP基础/句法语义分析
    25篇
  • NLP/文本匹配
    10篇
  • NLP/IE-命名实体识别(NER)
    29篇
  • NLP/语义分析(Text2SQL)
    5篇
  • NLP/IE-关系分类
    11篇
  • NLP/IE-“实体&关系”联合抽取
    17篇
  • NLP应用/问答系统
    7篇
  • NLP/机器翻译
    8篇
  • NLP/文本分类
    36篇
  • NLP/对话系统
    22篇
  • NLP/文本摘要
    19篇
  • NLP/第三方库
    30篇
  • NLP应用/阅读理解
    8篇
  • 计算机视觉/CV
    70篇
  • CV/目标检测(bbox&label)
    43篇
  • CV/目标分割(语义&实例)
    7篇
  • CV/人脸识别
    11篇
  • CV/对比学习
    4篇
  • CV经典模型
    20篇
  • CV/生成模型
    7篇
  • 时间序列(Time Series)
    21篇
  • AI/比赛
    19篇
  • 推荐系统/RS
    35篇
  • RS/用户画像
    5篇
  • RS/特征工程
    6篇
  • RS/召回层
    31篇
  • RS/排序层
    22篇
  • RS/一般推荐(CF协同过滤系列)
    27篇
  • RS/上下文推荐(FM因子分解系列)
    18篇
  • RS/序列推荐
    25篇
  • RS/基于知识图谱的推荐
    11篇
  • 概率图模型
    6篇
  • C
    15篇
  • C/基础语法
    11篇
  • C/指针
    4篇
  • C++
    16篇
  • C++/基础语法
    15篇
  • C++/指针
    5篇
  • C++/引用
    9篇
  • C++/正则表达式
    1篇
  • C++/std函数
    4篇
  • C++/函数
    6篇
  • C++/STL
  • C++/STL-string(字符串)
    18篇
  • C++/STL-vector(动态数组)
    17篇
  • C++/STL-list(双向链表)
    1篇
  • C++/STL-map(字典、哈希表)
    6篇
  • C++/STL-stack&queue&set
    3篇
  • C++/关键字
    9篇
  • C++/SDK
    10篇
  • C++/符号&运算符
    5篇
  • C++/ONNX
    5篇
  • C++/头&源文件
    12篇
  • C++/CMAKE
    82篇
  • C++/命名空间(namespace)
    4篇
  • C++/类、对象
    47篇
  • C++/STL(标准模板库)
    14篇
  • C++/Boost(“准”标准模板库)
    2篇
  • C++/Poco(网络库)
    4篇
  • C++/安装、编译、调试
    17篇
  • C++/Web服务器
    2篇
  • 数据库
    5篇
  • Linux
    107篇
  • Linux/虚拟机&Docker
    30篇
  • Linux/命令
    19篇
  • Linux/系统编程
    36篇
  • Linux/网络编程
    32篇
  • Linux/TCP(网络协议)
    5篇
  • Shell
    8篇
  • 图算法
    32篇
  • 项目管理
    3篇
  • 开发工具
    33篇
  • IDE/VSCode
    20篇
  • sklearn
    2篇
  • Matplotlib/Seaborn
    3篇
  • Neo4J
    23篇
  • 数据分析
    13篇
  • Numpy
    18篇
  • Python
    76篇
  • Pandas
    45篇
  • 大数据
    16篇
  • 大数据/Hadoop
    21篇
  • 大数据/数据采集(Flume/dataX)
    10篇
  • 大数据/消息队列(Kafka)
    10篇
  • 大数据/离线数仓(Hive)
    18篇
  • 大数据/实时数仓(Kafka+Flink)
  • 大数据/Spark
    10篇
  • 数据集
    38篇
  • Pytorch
    49篇
  • TensorFlow
    29篇
  • Paddle/百度飞桨
    3篇
  • 人工智能
    25篇
  • 深度学习/DL
    37篇
  • 算法
    26篇
  • 搜索
    10篇
  • Java架构
    41篇
  • Java/Scala
    135篇
  • 日常工具
    18篇
  • 概率论&数理统计&随机过程
    14篇

TA关注的专栏 23

TA关注的收藏夹 0

TA关注的社区 7

TA参与的活动 0

兴趣领域 设置
  • 编程语言
    pythonjavac++
  • 大数据
    大数据
  • 人工智能
    计算机视觉机器学习深度学习自然语言处理知识图谱
  • 嵌入式
    物联网
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 课程
  • 专栏
  • 关注/订阅/互动
  • 代码仓
  • 收藏
  • 社区
  • 最近

  • 课程

  • 专栏

  • 关注/订阅/互动

  • 代码仓

  • 收藏

  • 社区

搜索 取消

TensorRT推理:能在RTX5080的服务器中将onnx转为tensorrt的engine格式后再将其放入orin中运行吗

直接在 RTX 5080 上生成 engine 再拿去 Jetson Orin 跑:基本不行,也不被官方推荐。只在服务器上训练和导出 ONNX;在 Orin 上用 TensorRT 从 ONNX 重新构建 engine,然后把构建好的 engine 缓存下来重复使用。如果你愿意,我可以帮你把当前的改成一份更适合 Orin 的版本(包含显存友好的一些设置和 INT8/FP16 配置),你直接复制过去就能用。
原创
博文更新于 2025.12.10 ·
26 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FLOPs计算详解-LLM训练-基础知识01:反向传播【dW=∂L/∂W:当前层的权重参数梯度;dX:传给前一层算dW的上游梯度】【在最后一层:dX=∂L/∂X=∂L/∂Y·∂Y/∂X=GWᵀ】

X当前层的输入矩阵:每一行是一条样本里的一个“位置”的向量。W当前层的权重矩阵(要学习的参数),比如注意力里的 Q/K/V/O 权重、FFN 的 W1/W2/W3 等。Y = XW当前层的输出矩阵。会被送给激活函数 / 下一层 / loss 计算等。L是一个标量,表示模型整体表现好不好(越小越好)。一般是所有样本的 loss 之和或平均,比如交叉熵。G = ∂L/∂Y上游梯度:告诉你“如果 Y 的某个元素变大一点,L 会变大还是变小,以及大小是多少”。
原创
博文更新于 2025.12.08 ·
32 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

模型参数、梯度更新步骤(手推)【初始化参数、前向传播得到模型输出值、计算输出值与目标值之间损失Loss、反向传播梯度下降更新参数 】

计算图:通过图的方式来描述函数的图形已知J(a,b,c)=3(a+bc),令v=bc,u=a+v​J(a,b,c) = 3(a+bc),令v = bc, u=a+v​J(a,b,c)=3(a+bc),令v=bc,u=a+v​,求a,b,c各自的偏导数。令:a+bc=u,即:J=3udJda=dJdu×duda=3×1dJdb=dJdu×dudv×dvdb=3×1×cdJdc=dJdu×dudv×dvdc=3×1×b\begin{aligned} 令:&a+bc=u, 即: J = 3u\\ \frac{
原创
博文更新于 2025.12.07 ·
2403 阅读 ·
4 点赞 ·
1 评论 ·
11 收藏

FLOPs计算详解-LLM训练-基础知识02:FLOPs、显存、上游梯度矩阵G、激活 activations、gradient checkpointing

GGG激活(activations)就是网络在前向传播过程中,每一层算出的“中间结果”。比如每层的隐藏向量、每个非线性层的输出等等。
原创
博文更新于 2025.12.07 ·
26 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FLOPs计算详解-LLM训练03:Lora/全参训练FLOPs≈(2/3+LoRA参数量/原参数量​)【Lora显存占用=权重参数+激活】【激活=btz×seq_len×n_layer×dim】

完整的 LLaMA-2 FLOPs 计算笔记:通用符号:先把最关键的结论用一句人话说出来,然后再一点点推:你提的“能不能不算原始权重的 dX,只算 LoRA 分支的 dW/dX”理论上可以做成一种近似算法,那样 FLOPs 会更省,但那就不是标准 LoRA 的“正确反向”了。目前 peft 并没有这么做。记号和背景(先统一语言)我们讨论的是一层线性变换,放在 Transformer 里的某个位置,比如 attention 的 Q/K/V 投影或者 FFN 的 W1/W2/W3。BBB:batch size,
原创
博文更新于 2025.12.06 ·
25 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FLOPs计算详解-VLM训练01:Vision+Projector+LLM【连续编码+Full-FT:6SN_vis+6SN_pro+6(S+T)N_llm】【Lora:2/3 Full-FT】

Vision encoder 把图像变成视觉特征(S 个向量,连续或离散);Projector 把视觉特征送入 LLM 空间;LLM 对视觉 + 文本 token 序列做语言建模。连续型(vision 也训):\approx离散型 + 离线 tokenizer:去掉 6BSN_vis,那部分 FLOPs 变为 0(训练时只读 code)。对同一条图文对(同样 S,T),Vision/Projector/LLM blocks 的 FLOPs 几乎完全相同;
原创
博文更新于 2025.12.06 ·
30 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FLOPs计算详解-LLM训练02:冻结参数(硬冻结、软冻结)对FLOPs的影响

在同一条 pretrain 样本(相同 token 序列长度 T)如果是“硬冻结”(在中间层detach,下半层仅做前向,不参与反向):Chalf≈23CfullChalf​≈32​Cfull​→节省约 33% 的训练算力(主要体现在底部 L/2 层没有 backward)。如果只是“软冻结”(参数不求梯度,但梯度仍穿过这些层):Chalf≈56CfullChalf​≈65​Cfull​→只节省约 17% 的算力,因为仅去掉了dW。
原创
博文更新于 2025.12.06 ·
20 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FLOPs计算详解-LLM训练01:【前向(2N)、反向(4N)、adamW(可忽略)】【全参训练:Pretrain、SFT的FLOPs的对比(FLOPs无差别,区别在于反向传播时的显存占用不同)】

好,我们来把这几轮你问过的点一次性“收束”成一份2Tdin​dout​Tdmodel​Ldff​BCfwd​≈2NDCtrain​≈6ND。
原创
博文更新于 2025.12.06 ·
22 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

jetson orin nx super非桌面版 设置静态 IP 为 192.168.1.7 的方法

你这台 Jetson 的/etc里看起来netplan,但有,再结合你前面的ip a,可以确定这机子主要是靠管网的。好消息是:你现在wlP1p1s0,我们只需要把它从 “DHCP 自动获取” 改成 “手动固定 192.168.1.7”,以后重启也一直是这个 IP。下面给你一套。
原创
博文更新于 2025.11.22 ·
388 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

DINOv3 元数据生成详解

元数据(Metadata)是描述数据集的预处理索引文件,用于加速训练时的数据加载。传统加载# 将整个文件加载到内存data = np.load('entries-TRAIN.npy') # 占用 ~50 MB 内存内存映射# 不占用内存,按需加载data = np.load('entries-TRAIN.npy', mmap_mode='r') # 占用 ~0 MB 内存。
原创
博文更新于 2025.11.22 ·
843 阅读 ·
18 点赞 ·
0 评论 ·
27 收藏

ImageNet-1k数据集

AlexNet(2012)在 ImageNet 竞赛上实现了巨大突破,直接把 deep learning 推向计算机视觉的中心舞台,“ImageNet moment”。许多模型(ResNet、DenseNet、MobileNet、ViT 等)都先在 ImageNet-1k 上预训练,再迁移到下游任务(检测、分割等)。“在 ImageNet 上预训练”、“ImageNet top-1 acc”、“ResNet-50 在 ImageNet 上 76% top-1”
原创
博文更新于 2025.11.21 ·
877 阅读 ·
10 点赞 ·
0 评论 ·
5 收藏

2022-2025视觉编码器范式:离散型与连续型进展深度调研

多模态时代背景: 自2022年底ChatGPT掀起新一轮AI热潮以来,视觉-语言模型(VLM)和多模态大模型(MLLM)成为研究前沿,在图文对答、视觉推理等任务上取得显著进展[1]。这波进展源于Transformer架构跨模态的成功:Vision Transformer (ViT)将NLP中序列输入+Transformer编码器范式引入视觉领域,统一了CV与NLP的处理方式[2]。随后OpenAI的CLIP等跨模态预训练模型进一步打通图像与语言表征鸿沟,奠定了现代多模态模型架构基础[2]。然而,最新研究表明
原创
博文更新于 2025.11.21 ·
581 阅读 ·
23 点赞 ·
0 评论 ·
6 收藏

2022–2025年中国AI公司语音编码器技术进展调研报告

只需几秒参考录音,它就能产生与之音色相同的新句子语音,并允许用户用指令改变音色属性,如要求生成“
原创
博文更新于 2025.11.21 ·
201 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2022–2025年语音领域离散型与连续型编码器的研究进展

总结近年发展的趋势,并讨论未来可能的研究方向,例如离散与连续表征的融合等。接下来,各章节将详细阐述上述内容,并在末尾附上一份表格,列出调研中涉及的主要论文及其编码类型、方法特点和适用任务。
原创
博文更新于 2025.11.21 ·
82 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2022–2025年语音领域离散型与连续型编码器的研究进展

总结近年发展的趋势,并讨论未来可能的研究方向,例如离散与连续表征的融合等。接下来,各章节将详细阐述上述内容,并在末尾附上一份表格,列出调研中涉及的主要论文及其编码类型、方法特点和适用任务。
原创
博文更新于 2025.11.21 ·
55 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

视觉编码器在多模态AI时代的演进:2023年至2025年离散型与连续型范式的深度分析

此外,研究还表明,视频生成模型的骨干(如世界模型)可以作为可迁移的编码器,用于增强下游感知任务,这进一步拓宽了连续编码器的应用范围 [16]。尽管技术飞速发展,最新的研究表明,在处理涉及视觉证据的推理任务时,VLMs的回答正确性与图像中可用的视觉证据之间存在一个“持续且令人费解的差距” [1]。在潜空间扩散模型(LDM)的背景下,连续型变分自编码器(VAE)是至关重要的组件,用于将高分辨率原始视觉数据压缩到一个紧凑的连续潜空间,从而大幅降低后续扩散模型训练的计算复杂度 [4]。是提升性能的关键路径。
原创
博文更新于 2025.11.20 ·
117 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

视觉编码器01:离散型编码器 & 连续型编码器论文总览

下面为你整理。我将按类别、时间线与代表方法进行结构化整理,覆盖从基础工作到 2024–2025 最前沿成果。你可直接用于调研、写综述或制作 PPT。
原创
博文更新于 2025.11.20 ·
48 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

音频编码器01:离散型(从零训练语音Tokenizer)

我分别给你讲怎么训,并附带能直接抄的开源仓库。
原创
博文更新于 2025.11.20 ·
44 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

音频编码器02:连续性

原创
博文更新于 2025.11.20 ·
27 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

从零训练Qwen3-VL

如果你未来想做的是「在公开权重上继续做大规模多模态 pretrain(比如换数据、换目标函数)」而不是在完全随机初始化上起步,这两类代码会比 Open-Qwen2VL 更直接。参考 Qwen2-VL / Qwen2.5-VL 披露的流程,可以大致推测 Qwen3-VL 也是类似的三阶段:(直接在学术算力(8×A100-40G)上从零预训练了一个 2B 参数的多模态 Qwen2-VL 风格模型:(的配置和训练脚本,理解它是如何把「任意 ViT + 任意 LLM + 任意图文数据」拼在一起的。
原创
博文更新于 2025.11.19 ·
144 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多