frostjsy
码龄12年
求更新 关注
提问 私信
  • 博客:962,077
    社区:101
    问答:3
    962,181
    总访问量
  • 314
    原创
  • 519
    粉丝
  • 92
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2013-12-06

个人简介:越努力,越幸运

博客简介:

霜叶的博客

查看详细资料
个人成就
  • 获得1,075次点赞
  • 内容获得66次评论
  • 获得3,525次收藏
  • 代码片获得2,191次分享
  • 博客总排名2,262,407名
创作历程
  • 45篇
    2024年
  • 36篇
    2023年
  • 18篇
    2022年
  • 46篇
    2021年
  • 103篇
    2020年
  • 9篇
    2019年
  • 57篇
    2018年
  • 5篇
    2017年
成就勋章
TA的专栏
  • 编程题汇总
    27篇
  • 面试题汇总
    21篇
  • 搜索&推荐
    22篇
  • 历史&文学&与程序员无关记录笔记
    14篇
  • 环境配置&常见工具命令使用
    49篇
  • 深度学习
    21篇
  • 大模型
    10篇
  • 评价指标
    6篇
  • 游戏
    2篇
  • tensorflow
    14篇
  • 网址收藏
    6篇
  • 大数据
    15篇
  • c++
    20篇
  • pytorch
    6篇
  • 程序设计基础
    56篇
  • python
    39篇
  • 机器学习
    15篇
  • 自然语言处理
    33篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 6

兴趣领域 设置
  • 人工智能
    数据挖掘机器学习自然语言处理
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

36人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 问答
  • 帖子
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 问答

  • 帖子

  • 社区

  • 视频

  • 课程

  • 关注/订阅/互动

  • 收藏

搜索 取消

字符串专题

3. 无重复字符的最长子串难度:中等题目描述给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。示例 1:输入: "abcabcbb"输出: 3 解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。示例 2:输入: "bbbbb"输出: 1解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。示例 3:输入: "pwwkew"输出: 3解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。 请注意,你的
原创
博文更新于 2025.03.31 ·
850 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

树相关专题

1、树基本概念给定一个无向图G,如果:i)G是连通的;ii)G是无环的,则G是一棵树。满二叉树:叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点 完全二叉树:叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大 二叉查找树:Binary Search Tree,二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值 平衡查找树:二叉树中任意一个节点的左右子树的高度
原创
博文更新于 2025.03.31 ·
410 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

AIGC下程序员如何自洽?

在AIGC(如ChatGPT、Midjourney、Claude等)迅速发展的背景下,程序员的工作方式正在经历深刻的变革。
原创
博文更新于 2024.08.18 ·
666 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

如何看待低代码平台

近年来,低代码开发平台的快速崛起引发了广泛的关注和讨论。下面从几个维度基本概念、主要特点、市场现状、影响编程门槛、开发者工作方式变化,以及机遇和挑战这几个维度探讨低代码开发。
原创
博文更新于 2024.08.18 ·
779 阅读 ·
16 点赞 ·
0 评论 ·
3 收藏

deepspeed

实现了中描述的所有内容。。而NVMe支持在论文中进行了描述。DeepSpeed ZeRO-2主要用于训练,因为它的特性对推理没有用处。DeepSpeed ZeRO-3也可以用于推理,因为它允许将单个GPU无法加载的大模型加载到多个GPU上。🤗 Transformers通过以下两种方式集成了TrainerTrainerzero.Init。
原创
博文更新于 2024.08.18 ·
1177 阅读 ·
9 点赞 ·
0 评论 ·
21 收藏

搜索面试题

如果您将第5个点作为正样本,意味着它是您希望被推荐或关注的对象。而它之前的4个对象被点的次数较多或更受关注,可能泛指为较少关心或者不符合用户偏好的对象,因此视为负样本。
原创
博文更新于 2024.08.18 ·
785 阅读 ·
24 点赞 ·
0 评论 ·
11 收藏

大模型面试问题记录

层归一化(Layer Normalization)和批归一化(Batch Normalization)是两种常用的归一化技术,主要用于加速神经网络的训练并提高模型的表现。通过引入相对位置编码,使得模型能更好地理解位置关系。通过以上技术,DeepSpeed 可以显著加快模型训练的速度,支持更大的模型和更复杂的任务,使得研究人员和工程师能够更高效地进行深度学习研究和应用。:LoRA 通过引入低秩矩阵来表示权重的微调,只需要增加很少的参数,这使得微调过程更为高效,尤其是在大模型上,能显著降低计算和存储的开销。
原创
博文更新于 2024.08.18 ·
1510 阅读 ·
38 点赞 ·
0 评论 ·
14 收藏

编程小白到大神之路

编程是一项有挑战性但充满乐趣的技能。在选择编程语言和资源时,根据自己的兴趣和目标合理制定学习计划,持之以恒、不断实践,相信你能在编程的道路上走得更远,为自己的大学生活和未来职业发展打下坚实基础。
原创
博文更新于 2024.08.12 ·
1848 阅读 ·
8 点赞 ·
0 评论 ·
13 收藏

面试“八股文”有用吗?

八股文”在程序员招聘中的作用是一个复杂且具有争议的话题。
原创
博文更新于 2024.08.12 ·
957 阅读 ·
6 点赞 ·
0 评论 ·
2 收藏

json.dumps()包含的参数

作用:控制项目分隔符和键-值分隔符。默认值会在键和值之间添加一个空格,使 JSON 更具可读性。为整数时表示每层的空格数;为字符串时表示每层的这个字符串。遇到无法序列化的对象时,会调用此函数。此函数应返回一个可序列化的对象。作用:指定一个自定义的 JSONEncoder 子类来进行序列化。,则不检查循环引用(不推荐关闭此选项,以避免无限递归)。,则按字母顺序对字典的键进行排序。作用:设置缩进的字符数或字符。,则按字母顺序对字典的键进行排序。,则将非ASCII字符转义为。为对应的 JSON 值。
原创
博文更新于 2024.08.04 ·
1022 阅读 ·
7 点赞 ·
0 评论 ·
3 收藏

pandas按某2列进行分层随机抽样

在某些情况下,你可能需要按多列组合后的分组进行分层随机抽样。pandas 提供了灵活的数据操作方法,你可以使用groupby和apply方法结合sample来实现这种需求。具体来说,你可以先按多列分组,然后对每个分组进行随机抽样。
原创
博文更新于 2024.08.04 ·
504 阅读 ·
7 点赞 ·
0 评论 ·
1 收藏

pandas采样

pandas 提供了丰富的参数和功能,让sample方法能够满足各种随机抽样的需求,包括指定抽样数量、按比例抽样、设置随机种子、有无放回抽样以及按列和分层抽样。这些功能在数据分析和处理过程中非常有用,有助于快速获取具有代表性的小样本进行分析。
原创
博文更新于 2024.08.04 ·
958 阅读 ·
21 点赞 ·
0 评论 ·
3 收藏

json.dumps和json.dump区别

是将 Python 对象序列化为 JSON 格式的字符串。如果你想将 JSON 数据写入文件,可以将生成的字符串写入文件,或者更直接地使用函数,它会直接将 Python 对象序列化写入文件。下面是两个方法,一是使用然后写入文件,二是使用直接写入文件。
原创
博文更新于 2024.08.04 ·
1600 阅读 ·
25 点赞 ·
0 评论 ·
5 收藏

json.loads时限定为utf-8

json.loads本身支持 UTF-8 编码,直接解析即可。如果原始数据不是 UTF-8 编码,先转为 UTF-8 再解析。读取 JSON 文件时,指定以确保正确处理非 ASCII 字符。使用编码读取以去除 BOM。通过这些方法,你可以确保在使用json.loads时正确处理 UTF-8 编码的 JSON 数据。
原创
博文更新于 2024.08.04 ·
1339 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

混合了 UTF-8 字符串和 Unicode 转义序列的字符串统一转化为 UTF-8 编码的字符串

如果你有一个包含混合了 UTF-8 字符串和 Unicode 转义序列的字符串,并希望将它们统一转化为 UTF-8 编码的字符串,你可以按以下步骤进行操作。此过程涉及区分正常的 UTF-8 字符串和那些需要解码的 Unicode 转义序列。
原创
博文更新于 2024.08.04 ·
785 阅读 ·
11 点赞 ·
0 评论 ·
3 收藏

pandas 分层按列随机抽样

实现一个多步骤的过程以达到根据类别分层随机抽样,然后从特定的 ID 中选取相关的样本。下面的代码展示了如何用 pandas 来实现这些步骤。
原创
博文更新于 2024.08.04 ·
658 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

2024年,计算机相关专业还值得选择吗?。

计算机科学和信息技术领域一直是创新的前沿,随着科技的发展和对数据的依赖不断增加,这些专业的毕业生通常能发现具有竞争力的就业机会。:技术领域是一个不断扩展的行业。:随着云计算、大数据、物联网(IoT)、人工智能(AI)、机器学习和自动化等技术的发展,对于拥有相关专业背景的工作人员的需求也在不断上升。:此专业的个人需不断学习和提升技能以跟上技术进步的步伐,这为热衷于持续自我发展和终身学习的人提供了充分的空间。:很多计算机专业的工作提供了较为灵活的工作环境和时间安排,远程工作和自由职业的选项也日益增多。
原创
博文更新于 2024.07.28 ·
754 阅读 ·
13 点赞 ·
0 评论 ·
6 收藏

大模型获取embdding

以qwen为例:本文将使用 Hugging Face 的库来完成这些步骤。这是一个非常流行且功能强大的库,用于处理各种预训练语言模型。
原创
博文更新于 2024.07.28 ·
5522 阅读 ·
28 点赞 ·
1 评论 ·
9 收藏

查看空闲gpu

这个命令将输出你的 NVIDIA GPU 的当前状态,包括每个 GPU 的使用率、总内存、正在使用的内存、GPU 温度等信息。如果你希望检查 Unix 或 Linux 系统上的 GPU 使用情况(特别是查找空闲的 NVIDIA GPU),可以使用 NVIDIA 提供的命令行工具。另外,如果你在使用像 Kubernetes 这类容器编排系统,你可能需要查看集群的 GPU 使用情况,这通常需要集群级的监视和管理工具来获得概览。对于其他类型的 GPU,你可能需要查找特定于供应商的工具或命令来获取使用情况信息。
原创
博文更新于 2024.07.28 ·
1191 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

linux查看磁盘剩余内存

会以 MB、GB 等为单位显示总内存、已使用内存、空闲内存以及交换空间的使用情况。这个命令能让你快速了解系统物理内存的当前状态。显示的是文件系统的空间使用情况,而不是物理内存(RAM)的空间使用情况。如果你想要查看系统的内存使用情况,应该使用。代表“磁盘文件系统”(disk filesystem),它可以显示有关文件系统磁盘空间使用情况的信息。通常,您可能希望以易于阅读的方式显示大小,可以使用。在 Linux 系统中,通常用。命令来查看磁盘的剩余空间。是文件系统挂载点的路径,是一个设备的文件名。
原创
博文更新于 2024.07.28 ·
1649 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏
加载更多