许泽宇的技术分享
码龄12年
求更新 关注
提问 私信
  • 博客:697,706
    社区:85
    动态:1,934
    视频:1
    699,726
    总访问量
  • 515
    原创
  • 2,917
    排名
  • 13,781
    粉丝
  • 53
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
加入CSDN时间: 2013-09-12

个人简介:微软最有价值专家(Al Platform MVP),华为云开发者专家(HCDE),NebulaGraph认证专家,Neo4j认证专家,上市公司首席架构师,211研究生在读,专注.Net 和AI相关技术,每期内容涵盖教程、技巧、行业动态及解决方案,助力各层次开发者掌握技术精髓,共同进步。 运营公众号与B站同号《许泽宇的技术分享》 简介、实用、深入.Net与AI世界,开始我们的技术之旅。

  • 毕业院校: 华中师范大学
博客简介:

许泽宇的技术分享

博客描述:
微软最有价值专家(Al Platform MVP),华为云开发者专家(HCDE),NebulaGraph认证专家,Neo4j认证专家,上市公司首席架构师,211研究生在读,专注.Net 和AI相关技术,内容涵盖教程、技巧、行业动态及解决方案
查看详细资料
个人成就
  • 优质创作者: 人工智能技术领域
  • 获得10,660次点赞
  • 内容获得99次评论
  • 获得8,446次收藏
  • 代码片获得3,593次分享
  • 原力等级
    原力等级
    7
    原力分
    4,373
    本月获得
    261
创作历程
  • 418篇
    2025年
  • 95篇
    2024年
  • 1篇
    2023年
  • 5篇
    2017年
成就勋章
TA的专栏
  • AI漫剧
    4篇
  • AgentFramework
    12篇
  • Agent
    41篇
  • RAG技术全解:从原理到实战的简明指南
    65篇
  • vibecoding
    35篇
  • dataagent
    1篇
  • AIGC
    138篇
  • 大模型
    51篇
  • text2sql
    25篇
  • AntSK
    27篇
  • GraphRag
    7篇
  • mcp
    17篇
  • SemanticKernel
    9篇
  • .net
    10篇
  • web前端
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 7

TA参与的活动 27

TA的推广
兴趣领域 设置
  • Python
    python
  • 编程语言
    c#
  • 人工智能
    人工智能
  • 微软技术
    .net
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

当AI遇上字幕:一个让视频“开口说话“的智能助手是如何炼成的

VideoCaptioner这个项目,表面上是个字幕处理工具,实际上是一个AI工程化的优秀范例。AI不是银弹:LLM很强大,但需要工程手段约束(Agent Loop、验证机制)性能优化无止境:缓存、并发、批量处理,每个细节都能提升体验用户体验第一:再强的技术,包装不好也没人用开源的力量:一个人的创意,可以惠及成千上万的用户如果你也在做AI应用开发,不妨参考这个项目的设计思路。好的工程不是炫技,而是把复杂的事情做简单,把简单的事情做极致。项目地址Star数:持续增长中(写这篇文章时已经破千)适合人群。
原创
博文更新于 13 小时前 ·
588 阅读 ·
23 点赞 ·
0 评论 ·
6 收藏

解密Anthropic的MCP Inspector:从协议调试到AI应用开发的全栈架构之旅

MCPInspector是Anthropic开源的AI开发调试工具,用于可视化调试ModelContextProtocol(MCP)。该工具采用现代化技术栈(React+TypeScript+Vite+TailwindCSS)构建,支持stdio、SSE和HTTP三种传输协议,提供OAuth流程调试、动态表单生成等功能。文章详细剖析了其Monorepo架构、代理模式设计、安全防护机制和性能优化策略,并分享了开发最佳实践和扩展方法。MCPInspector不仅解决了MCP协议调试难题,还展示了专业级开发者工具
原创
博文更新于 13 小时前 ·
476 阅读 ·
19 点赞 ·
0 评论 ·
8 收藏

Sim.ai:开源AI工作流编排平台的技术革命——从可视化设计到生产级部署的完整实践

Sim.ai是一款开源的AI工作流编排平台,采用现代化的技术栈(Next.js16、Bun、PostgreSQL)构建。其核心特性包括可视化DAG工作流编排、多模型支持(OpenAI/Claude/Gemini等)、100+工具集成、实时协作和本地模型部署。平台通过优雅的架构设计实现了高效的并行执行、变量解析和错误处理机制,并内置RAG、人工审核等企业级功能。作为Apache2.0开源项目,Sim.ai既支持自托管保障数据隐私,也提供云服务选项,特别适合构建智能客服、自动化流程等AI应用。相比Zapier/
原创
博文更新于 2025.12.15 ·
1237 阅读 ·
38 点赞 ·
2 评论 ·
24 收藏

当AI遇上视频剪辑:一个让你“躺平“的智能剪辑系统

AI视频剪辑系统Ai-movie-clip通过AI技术实现智能视频剪辑,能自动分析视频内容并生成剪辑方案。该系统具备视频理解、语音处理、AI决策和视频编辑等核心功能,采用模块化架构设计,支持多片段智能组合和语音时间戳等创新技术。适用于会议记录、Vlog制作、产品宣传等多种场景,可大幅提升剪辑效率。项目开源免费,开发者可贡献代码或进行二次开发。虽然不能完全替代专业剪辑,但能处理80%的重复性工作,让用户专注于创意部分。未来将向更智能的内容理解、创作能力和行业定制化方向发展。
原创
博文更新于 2025.12.14 ·
1112 阅读 ·
11 点赞 ·
0 评论 ·
11 收藏

当AI数字人遇上Electron:一个让小白也能玩转的开源系统是如何炼成的

AIGCPanel是一款创新的开源AI桌面应用,通过Electron+Vue3+TypeScript技术栈实现了本地AI模型管理的一站式解决方案。该项目采用分层架构设计,包含主进程层、服务层、任务调度层和数据持久化层,支持模型热插拔、智能任务队列和跨进程通信等核心功能。其亮点包括插件化架构实现模型动态加载、状态机模式管理任务生命周期、缓存代理提升性能,以及完善的错误处理和国际化支持。该项目将复杂的AI技术封装为简单操作,让普通用户也能轻松使用多种AI模型,同时为开发者提供了参与开源贡献的机会,展示了AI桌面
原创
博文更新于 2025.12.14 ·
745 阅读 ·
10 点赞 ·
0 评论 ·
11 收藏

当AI遇上A股:一个让机器读懂财经新闻的量化框架

CSMD项目通过构建中文股市多模态数据集,结合价格数据和财经新闻,利用大语言模型提取关键因子,开发了轻量级量化框架LightQuant。该项目创新性地采用层次化注意力网络和变分自编码器等9种模型,实现了超过54%的预测准确率。实验显示,多模态模型比单模态模型年化收益率提升2.44个百分点,尤其在科技股和消息驱动行情中表现突出。项目开源了完整数据集和代码,为量化研究提供了高质量基准,同时也揭示了当前在数据时效性、新闻覆盖面和交易成本简化等方面的局限性。
原创
博文更新于 2025.12.14 ·
829 阅读 ·
26 点赞 ·
0 评论 ·
19 收藏

当AI遇上电影工业:一个让“抽卡式“视频生成彻底翻篇的工程化实践

《关键帧驱动:重构AI视频生产的工业化流程》 本文针对当前Text-to-Video工具存在的角色一致性差、镜头控制弱等问题,提出了一套基于关键帧驱动的AI视频生产解决方案CineGenAIDirector。该系统采用四阶段工业化流程:剧本智能拆解、资产一致性管理、导演工作台精细化控制和视频生成,通过Gemini和Veo等AI模型的组合应用,实现了从剧本到成片的可控生产。重点解决了角色定妆照、场景概念图等资产一致性难题,并创新性地采用双帧控制技术确保镜头运动质量。文章详细分享了技术架构设计、踩坑经验及性能优
原创
博文更新于 2025.12.14 ·
899 阅读 ·
30 点赞 ·
0 评论 ·
26 收藏

当AI开始“说人话“:微软VibeVoice如何让机器300毫秒内开口

微软VibeVoice项目突破语音合成延迟瓶颈,实现300毫秒首字响应,接近人类对话反应速度。该项目采用分层Transformer架构(文本理解层+语音生成层)和7.5Hz超低帧率声学Tokenizer,通过窗口滑动机制实现边输入边输出的流式处理。创新性地结合Next-Token Diffusion扩散模型,在保持音质的同时将计算量降低85%。支持10分钟连续语音生成,RTF低至0.3x,参数仅0.5B便于部署。当前主要支持英语单说话人场景,未来计划扩展多语言支持和开放音色定制工具。该技术将推动智能客服、有
原创
博文更新于 2025.12.14 ·
1210 阅读 ·
44 点赞 ·
0 评论 ·
21 收藏

当 AI Agent 遇上可观测性:AgentOpenTelemetry 让你的智能体不再“黑盒“

微软推出Agent OpenTelemetry解决方案,为AIAgent提供全面的可观测性支持。该系统采用装饰器模式实现无侵入式集成,通过标准化标签记录Token消耗、响应时间等关键指标,并支持敏感数据保护。开发者可以使用AspireDashboard实时监控Agent行为,结合ApplicationInsights进行生产环境分析。该方案还支持分布式追踪、多租户隔离等功能,帮助开发者从"黑盒"调试转向数据驱动的性能优化。典型案例显示,基于遥测数据的优化可使响应时间降低67%,Token
原创
博文更新于 2025.12.13 ·
1055 阅读 ·
23 点赞 ·
0 评论 ·
22 收藏

聊天一开,架构图自动长出来:Next AI Draw.io 深度拆解与实战指南

《AI绘图革命:NextAIDraw.io如何用对话重构图表设计》 摘要: NextAIDraw.io创新性地将AI对话与专业绘图工具draw.io结合,通过自然语言指令快速生成精准架构图。该系统采用多层技术架构:前端保留draw.io成熟界面,后端通过LLM生成合规XML,并配备严谨的校验机制确保输出质量。核心创新包括双模式工具调用(全量生成/局部编辑)、XML安全校验体系及多云模型支持,显著提升绘图效率的同时保证可靠性。典型应用场景涵盖架构评审、需求澄清等多个专业领域,让用户通过简单对话即可获得可视化成
原创
博文更新于 2025.12.13 ·
900 阅读 ·
13 点赞 ·
0 评论 ·
20 收藏

当PDF遇上AI:MinerU如何用1.2B参数吊打千亿级大模型?

MinerU开源项目突破PDF解析难题,通过创新的双模式架构(Pipeline和VLM)实现高效文档处理。VLM模式采用1.2B参数多模态模型,在OmniDocBench评测中超越Gemini2.5Pro等大型模型,支持37种语言、跨页表格合并等功能。项目提供从命令行到API的完整工具链,8GB显存即可运行,并支持国产算力平台。实测显示,vLLM加速下吞吐量超10000tokens/s,处理200页书籍仅需几分钟。MinerU在学术研究、企业文档管理等场景展现强大实用性,其开源特性(AGPL-3.0)允许商
原创
博文更新于 2025.12.12 ·
1217 阅读 ·
31 点赞 ·
0 评论 ·
16 收藏

当AI学会“拍电影“:SkyReels V1如何让你的RTX 4090变身好莱坞工作站

SkyReelsV1:让AI视频生成触手可及 SkyReelsV1是一款专注于人像视频生成的AI工具,通过技术创新突破了传统视频生成的三大障碍:显存需求高、生成速度慢和工程复杂度高。该工具采用FP8量化和参数级offload技术,将80GB的显存需求压缩至18.5GB,使RTX4090这样的消费级显卡也能流畅运行。其特色包括: 专注人像领域,支持33种面部表情和400+动作组合 多GPU并行支持,效率保持在70%以上 提供命令行和网页双接口,开箱即用 相比同类产品,推理时延降低58.3% SkyReelsV
原创
博文更新于 2025.12.12 ·
1089 阅读 ·
18 点赞 ·
0 评论 ·
26 收藏

SkyReels V1 人像视频生成模型的技术拆解与实战指南

SkyReelsV1是一款高效文本/图像生成视频的推理框架,基于腾讯HunyuanVideo优化而来。其核心优势在于:1)支持消费级GPU(如RTX4090)运行544×960分辨率97帧视频;2)通过量化、离线化、多GPU并行等技术,端到端时延最高降低58.3%;3)提供命令行和Gradio两种交互方式,满足批量生产和小白体验需求。该框架特别优化了人像场景,适用于短视频预演、广告创意、教育动画等场景,让视频生成像"点外卖"一样简单易用。
原创
博文更新于 2025.12.11 ·
1511 阅读 ·
43 点赞 ·
0 评论 ·
17 收藏

Nano BananaPro生图使用指南:让AI绘画触手可及

如果内置的提示词不够用,可以自己添加。扩展支持编辑自定义提示词,还能上传参考图片。"title": "提示词标题","preview": "效果预览图片URL","prompt": "详细的提示词内容","author": "作者","mode": "generate或edit","category": "分类","sub_category": "子分类"我自己加了几个常用的提示词,比如"技术架构图"、"代码流程图"之类的,用起来很顺手。
原创
博文更新于 2025.12.08 ·
1247 阅读 ·
35 点赞 ·
0 评论 ·
11 收藏

聊天一开,架构图自动长出来:Next AI Draw.io 深度拆解与实战指南

《AI绘图新范式:NextAIDraw.io的技术实现与应用价值》 摘要: NextAIDraw.io创新性地将AI对话与draw.io绘图工具结合,通过自然语言指令快速生成专业图表。该系统采用分层架构设计:前端基于Next.js实现交互界面,后端通过多云模型API处理用户请求,核心创新点在于XML校验修复机制与双工具调用策略(display_diagram/edit_diagram)。技术亮点包括:严格的状态管理、流式对话响应、智能XML处理工具链,以及多云模型兼容层。该方案有效解决了传统绘图工具操作繁琐
原创
博文更新于 2025.12.08 ·
1460 阅读 ·
28 点赞 ·
0 评论 ·
27 收藏

X-AnyLabeling深度解析:让AI标注像呼吸一样自然

步骤1:导出ONNX模型步骤2:创建配置文件stride: 32classes:- class1- class2- class3步骤3:放置文件步骤4:在UI中加载启动X-AnyLabeling点击"模型" → "加载自定义模型"选择你的配置文件就这么简单!无需修改任何Python代码。回到文章开头,那个凌晨两点还在标注数据的算法工程师小李。如果他使用了X-AnyLabeling,情况会大不相同:晚上8点,小李打开X-AnyLabeling,加载YOLOv8模型,点击"批量推理"。
原创
博文更新于 2025.12.07 ·
1202 阅读 ·
28 点赞 ·
0 评论 ·
27 收藏

让计算机“看懂“世界只需5行代码?揭秘ImageAI背后的极简设计哲学

摘要:ImageAI是一个简化计算机视觉开发的Python库,让开发者无需深入理解深度学习原理即可实现图像分类、目标检测等功能。文章分析了传统深度学习的复杂门槛,展示了ImageAI如何通过5行代码实现ResNet50图像分类,并剖析了其三层架构设计。该库支持自定义训练、多种预训练模型和移动端部署,广泛应用于安防监控、工业质检等领域。虽然面临大模型挑战,但ImageAI凭借低门槛、隐私保护和定制化优势保持竞争力。文章最后指出,ImageAI代表了技术民主化趋势,让AI开发变得更简单高效。
原创
博文更新于 2025.12.07 ·
1029 阅读 ·
20 点赞 ·
0 评论 ·
15 收藏

当AI学会“自己动手,丰衣足食“:深度剖析AgentGPT的自主智能之路

摘要: AgentGPT是一款突破性的自主AI代理,不同于传统问答式AI,它能根据用户目标自主拆解任务、调用工具并生成完整解决方案。其技术架构采用前后端分离设计,前端基于Next.js+React,后端使用FastAPI+LangChain,支持多语言输出、流式响应和动态Token管理。核心创新在于"Plan-and-Solve"工作流:目标拆解→工具选择→任务执行→结果评估→循环迭代,并集成搜索、代码生成等工具。项目开源且支持扩展,未来或强化记忆、多Agent协作等能力,标志着AI从&
原创
博文更新于 2025.12.07 ·
1202 阅读 ·
16 点赞 ·
0 评论 ·
20 收藏

当AI竞赛遇上云原生:EvalAI如何用450+挑战赛重新定义机器学习评估标准

EvalAI的故事告诉我们,在技术快速迭代的AI时代,"标准制定者"往往比"技术领先者"拥有更持久的竞争优势。就像HTTP协议成就了互联网,SQL标准统一了数据库一样,EvalAI正在AI评估领域扮演着类似的"基础设施"角色。从450+挑战赛的成功举办,到51,000+用户的积极参与,EvalAI已经证明了自己不仅仅是一个技术平台,更是一个连接全球AI研究者的"数字巴别塔"。它让不同语言、不同文化背景的研究者能够在统一的标准下进行公平的竞争和合作。
原创
博文更新于 2025.12.07 ·
802 阅读 ·
12 点赞 ·
0 评论 ·
20 收藏

PPT渲染引擎的前端魔法:揭秘文多多AiPPT的技术内核

文多多AiPPT项目通过创新架构设计实现PPT在浏览器的高效渲染。其核心技术包括:1)采用JSON作为中间格式,简化PPT文件处理;2)双引擎渲染系统(Canvas和SVG)满足不同场景需求;3)精细处理颜色、几何形状和文本等复杂元素;4)支持丰富的动画效果和在线编辑功能。项目采用前后端分离架构,通过智能缓存和增量渲染优化性能,并支持AI生成PPT内容。这种技术方案既保证了渲染质量,又提供了良好的用户体验,为在线PPT处理提供了创新解决方案。
原创
博文更新于 2025.12.06 ·
1167 阅读 ·
34 点赞 ·
1 评论 ·
12 收藏
加载更多