牛andmore牛
码龄13年
求更新 关注
提问 私信
  • 博客:1,340,284
    社区:2
    问答:91
    1,340,377
    总访问量
  • 144
    原创
  • 4,752
    粉丝
  • 73
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:美国
加入CSDN时间: 2013-06-18

个人简介:深度学习ing,人嘛,总要有点追求,要不和咸鱼有什么区别。。。。全部开源,用爱发光。

博客简介:

dddeee的专栏

查看详细资料
个人成就
  • 获得1,604次点赞
  • 内容获得436次评论
  • 获得6,245次收藏
  • 代码片获得130,155次分享
  • 博客总排名115,962名
  • 原力等级
    原力等级
    8
    原力分
    5,073
    本月获得
    98
创作历程
  • 7篇
    2025年
  • 17篇
    2024年
  • 20篇
    2023年
  • 24篇
    2022年
  • 23篇
    2021年
  • 25篇
    2020年
  • 32篇
    2019年
  • 2篇
    2016年
  • 1篇
    2015年
成就勋章
TA的专栏
  • 大模型
    5篇
  • 大模型学习
    6篇
  • C++
    3篇
  • 论文学习及复现
  • 报错及解决
    1篇
  • ONNX
    9篇
  • Pytorch
    5篇
  • Tensorflow
    19篇
  • Paddle
    4篇
  • PaddleSeg
    1篇
  • PaddleDetection
    5篇
  • 工具代码
    8篇
  • 数据标注及转换
    10篇
  • 课程
  • 目标检测
    8篇
  • darknet
    4篇
  • YOLO
    1篇
  • 杂项
    5篇
  • 算法
    5篇
  • 图像处理
    5篇
  • python
    5篇
  • colab
    1篇
  • OpenCV
    8篇
  • jupyter
    9篇
  • ubuntu
    15篇
  • 开发环境
    14篇
  • WSL2
    1篇
  • docker
    4篇
  • 深度学习
    3篇
  • AI应用
    2篇
  • 边缘计算
    5篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 1

兴趣领域 设置
  • 人工智能
    机器学习深度学习tensorflowpytorch图像处理
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

34人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

windows11 安装WSL2全流程

本文介绍了win11安装wsl做开发环境
原创
博文更新于 2025.08.24 ·
204466 阅读 ·
388 点赞 ·
57 评论 ·
1612 收藏

ubuntu配置远程桌面

如下步聚中,如果使用系统自带的有问题,先试下1,如果不行,直接用2以后的,是没有问题的。是一种与现有的 X11 显示服务器一起使用的 VNC 服务器,允许你在 VNC 会话中共享当前登录的桌面环境。是一种高性能的 VNC 服务器,兼容性好,且支持现代桌面环境。工作中常常的工作模式是本地电脑访问远程服务器,如果是图像算法工程师,必然需要查看图片,如果数据都在远程服务器上, 那么我们需要安装远程桌面。如果问题依然存在,可能需要检查系统是否正确安装了桌面环境,或者检查 VNC 服务器与桌面环境的兼容性。
原创
博文更新于 2025.06.23 ·
19442 阅读 ·
27 点赞 ·
0 评论 ·
52 收藏

通过HTTP协议实现Git免密操作的解决方案

通过HTTP协议实现Git免密操作的解决方案
原创
博文更新于 2025.04.09 ·
823 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

3、fabric实现多机多卡训练

本文演示使用pytorch lightning fabric多机多卡进行训练
原创
博文更新于 2025.03.28 ·
840 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

2、基于pytorch lightning的fabric实现pytorch的多GPU训练和混合精度功能

使用pytorch lightning fabric模块快速实现模型的混合精度和分布式训练
原创
博文更新于 2025.03.27 ·
3412 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

paddle的安装

支持多gpu训练,paddle的安装完整流程,文中还包括离线安装conda安装包
原创
博文更新于 2025.03.19 ·
13407 阅读 ·
1 点赞 ·
0 评论 ·
27 收藏

onnxruntime-gpu与cuda版本对应及是否能调用cuda测试

onnxruntime-gpu安装及cuda版本对应关系和是否可以调用gpu测试
原创
博文更新于 2025.03.14 ·
7396 阅读 ·
12 点赞 ·
3 评论 ·
14 收藏

深入解析 Transformer:从原理到可视化再到PyTorch实现

详解transformer
原创
博文更新于 2025.02.07 ·
2041 阅读 ·
13 点赞 ·
0 评论 ·
28 收藏

阿里云服务器配置FRP穿透内网的利器,轻松实现反向代理

使用阿里云服务器,实现frp 反向代理ssh
原创
博文更新于 2025.01.18 ·
4365 阅读 ·
26 点赞 ·
0 评论 ·
27 收藏

远程和本地文件的互相同步

本地和远程文件互通
原创
博文更新于 2025.01.10 ·
1449 阅读 ·
22 点赞 ·
0 评论 ·
27 收藏

vscode+cline+continue+deepseekv3实现cursor和windsurf平替

deepseekv3+continue+cline平替cursor和windsurf
原创
博文更新于 2025.01.02 ·
19082 阅读 ·
52 点赞 ·
6 评论 ·
84 收藏

LLM图书 四本《Building An LLM from scratch》《Hands-on LLMs》《AI Engineering》《LLM Engineer’s Handbook》

发布资源 2024.12.27 ·
zip

YOLO模型发展中各版本的重大改进

yolo模型发展过程中各版本的改进方法
原创
博文更新于 2024.12.27 ·
2866 阅读 ·
24 点赞 ·
0 评论 ·
37 收藏

想深入理解 LLMs?这四本书籍帮你打通任督二脉!

这四本书籍相辅相成,从理论到实践再到工程,全方位地为你构建完整的 LLM 知识体系。从基本原理到实际应用,再到系统构建和生产部署,这四本书将帮助你全面掌握 LLM 的知识,让你在快速发展的 AI 领域中脱颖而出。如果你真的渴望深入理解 LLMs,并将其应用于实际场景中,那么这四本书绝对是你的不二之选。不要犹豫,现在就开始你的 LLM 学习之旅吧!这四本书籍可能需要你有一定的编程基础和机器学习基础,如果你还没有相关知识,建议先补充基础知识,然后再进行深入学习。希望这篇文章能够帮助到你!
原创
博文更新于 2024.12.27 ·
1285 阅读 ·
21 点赞 ·
1 评论 ·
15 收藏

构建高效智能体

智能体”可以有多种定义。一些客户将智能体定义为完全自主的系统,它们可以长时间独立运行,并使用各种工具来完成复杂的任务。另一些人则使用这个术语来描述更具规范性的实现,即遵循预定义的工作流程。工作流程workflows是指通过预定义的代码路径编排 LLM 和工具的系统。智能体agents则指的是 LLM 动态地指导其自身过程和工具使用,并保持对完成任务方式的控制的系统。下面,我们将详细探讨这两种类型的智能体系统。在附录 1(“实践中的智能体”)中,我们将描述客户发现使用这些类型系统特别有价值的两个领域。
翻译
博文更新于 2024.12.23 ·
283 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

3、LLM动手实践路线

通过不断的尝试和学习,你将逐渐掌握 LLM 的实际应用技能。记住,这是一个持续学习和迭代的过程。GitHub 上有许多优秀的 LLM 相关开源项目,例如各种 LLM 的实现、微调脚本、应用示例等。你需要积极寻找各种实践机会,从简单的任务开始,逐步挑战更复杂的项目。这些框架可以帮助你更便捷地构建基于 LLM 的应用程序,例如问答系统、聊天机器人等。网上有很多关于 LLM 实践的教程和示例代码,例如博客文章、GitHub 仓库等。提供免费的 GPU 资源,是进行 LLM 实践的理想平台。
原创
博文更新于 2024.12.20 ·
748 阅读 ·
8 点赞 ·
0 评论 ·
11 收藏

2、深入理解LLM原理资源

深入理解 LLM 原理的阶段,这意味着你可能已经掌握了一些基础知识,现在需要更深入地挖掘其内部机制。这是一个关键阶段,需要你投入更多的时间和精力阅读学术论文、技术博客,并进行思考和总结。通过以上这些资源和方法,相信你能够更深入地理解 LLM 的原理,为后续的学习和应用打下坚实的基础。这是一个充满挑战但也充满乐趣的过程,祝你学习顺利!
原创
博文更新于 2024.12.20 ·
1126 阅读 ·
16 点赞 ·
0 评论 ·
11 收藏

1、学习大模型总纲

学习大模型技术是一个循序渐进的过程,需要理论学习和实践相结合。由于大模型涉及的知识面非常广,建议你根据自己的背景和兴趣选择合适的学习路径。学习大模型技术是一个令人兴奋且充满挑战的旅程。希望以上建议能帮助你找到适合自己的学习方法,并在这个快速发展的领域取得进步!
原创
博文更新于 2024.12.20 ·
1146 阅读 ·
23 点赞 ·
0 评论 ·
9 收藏

wsl中使用windsurf来辅助写代码

windsurf win11 wsl2中使用方法
原创
博文更新于 2024.12.12 ·
1449 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

pytorch四种单机多卡分布式训练方法

对比四种pytorch分布式训练方法数据的处理方试
原创
博文更新于 2024.11.25 ·
2112 阅读 ·
24 点赞 ·
1 评论 ·
36 收藏
加载更多