饮冰l于 2021-02-05 15:16:54 发布 1288收藏 11分类专栏: 图 文章标签: 算法 数据挖掘 机器学习 深度学习版权图 专栏收录该内容66 篇文章 23 订阅订
前言:本文的作者认为对于 GNN 的可解释性不足。基于此,作者在节点分类任务上提出可以通过将忽略图结构的浅层模型与两个利用标签结构中相关性的后处理方法相结合,超越或匹配最先进的 GNN 。具体如下:(i)误差相关性:传播训练数据中的残余误差以纠正测试数据中的错误信息(ii)预测相关性:在测试集数据上进行平滑预测作者将整个过程称为 Correct and Smooth (C&S)。其中后处理步骤是通过对早期的基于图的半监督学习方法的标准标签传播方法进行修改实现的。该方法实现了惊人的性能提升,在 OGB-P









