mishidemudong
码龄13年
求更新 关注
提问 私信
  • 博客:5,575,703
    社区:139
    5,575,842
    总访问量
  • 193
    原创
  • 1,982
    粉丝
  • 58
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:新疆
加入CSDN时间: 2013-04-04

个人简介:菜鸟上路,一颗红心,两手准备。

博客简介:

木东的博客

查看详细资料
个人成就
  • 获得1,742次点赞
  • 内容获得401次评论
  • 获得8,157次收藏
  • 代码片获得1,608次分享
  • 博客总排名809,727名
创作历程
  • 10篇
    2022年
  • 51篇
    2021年
  • 118篇
    2020年
  • 119篇
    2019年
  • 230篇
    2018年
  • 396篇
    2017年
  • 194篇
    2016年
  • 217篇
    2015年
成就勋章
TA的专栏
  • 量化交易
    4篇
  • 多模态学习
    9篇
  • 增长黑客
    1篇
  • 产品和营销
    2篇
  • 架构和UML
    5篇
  • 图推理graphreasoning
    1篇
  • 前端UI产品
    1篇
  • 机器学习
    256篇
  • 数据结构与算法
    91篇
  • 面试编程题库
    31篇
  • 数学基础
    53篇
  • 生物识别技术相关
  • 智力题
    2篇
  • C/C++语法相关
    34篇
  • 数据挖掘
    132篇
  • 数据挖掘杂谈
    11篇
  • Python语法相关
    149篇
  • 数据仓库与联机分析处理
    42篇
  • 操作系统相关知识
    3篇
  • 人生杂谈
    22篇
  • 分布式计算
    41篇
  • 计算机网络知识
    2篇
  • 用户画像和个性化推荐
    19篇
  • 学习JAVA
    13篇
  • Deep Learning
    243篇
  • 文本挖掘
    47篇
  • 各类平台软件使用手册
    8篇
  • WEKA源码解读(原创)
    3篇
  • SPARK
    93篇
  • 微软技术类文章
    1篇
  • 玩转Linux
    38篇
  • GraphLab
    10篇
  • Scala编程很有意思
    12篇
  • 数据库开发
    30篇
  • 模式识别
    17篇
  • 学习C#
    25篇
  • 深度学习之卷及神经网络
    9篇
  • STL (C++)
    2篇
  • Java8学习系列
    2篇
  • python 工具包
    134篇
  • 推荐算法
    26篇
  • Web开发
    1篇
  • tensorflow分布式部署
    58篇
  • python-spark
    22篇
  • python-opencv
    1篇
  • 风控模型
    21篇
  • 知识图谱
    127篇
  • Neo4j
    11篇
  • 大数据营销
    26篇
  • 流式计算streamingKafka
    22篇
  • 容器虚拟化技术
    5篇
  • GAN网络半监督学习
    6篇
  • 增强学习
    6篇
  • 规则引擎
    1篇
  • 区块链技术
    1篇
  • NLG_TTS
    10篇
  • TTS语音_AI
    5篇
  • 分布式架构设计
    9篇
  • NLP
    92篇
  • 智能客服系统
    18篇
  • 强化学习
    15篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    机器学习深度学习自然语言处理nlp
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

饮冰l于 2021-02-05 15:16:54 发布 1288收藏 11分类专栏: 图 文章标签: 算法 数据挖掘 机器学习 深度学习版权图 专栏收录该内容66 篇文章 23 订阅订

前言:本文的作者认为对于 GNN 的可解释性不足。基于此,作者在节点分类任务上提出可以通过将忽略图结构的浅层模型与两个利用标签结构中相关性的后处理方法相结合,超越或匹配最先进的 GNN 。具体如下:(i)误差相关性:传播训练数据中的残余误差以纠正测试数据中的错误信息(ii)预测相关性:在测试集数据上进行平滑预测作者将整个过程称为 Correct and Smooth (C&S)。其中后处理步骤是通过对早期的基于图的半监督学习方法的标准标签传播方法进行修改实现的。该方法实现了惊人的性能提升,在 OGB-P
转载
博文更新于 2022.09.10 ·
680 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

####好好好###图神经网络系统介绍与总结分析

图神经网络算法将深度神经网络的运算(如卷积、梯度计算)与迭代图传播结合在一起:每个顶点的特征都是由其邻居顶点的特征结合一组深度神经网络来计算。但是, 现有的深度学习框架不能扩展和执行图传播模型,因此缺乏高效训练图神经网络的能力,并且现有框架一般采用数据/模型并行来分布式训练深度神经网络,这种并行计算方法难以直接应用于图神经网络,因此限制了训练大规模图神经网络的能力。而现有的图处理系统虽然能够表示迭代图传播模型,并能有效支持大规模图的迭代计算,但是缺乏支持神经网络计算的关键能力,如张量抽象、自动微分等
转载
博文更新于 2022.05.05 ·
1101 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

####好好好#####时序数据库介绍和使用

1.基础1.1 时序数据的定义什么是时间序列数据(Time Series Data,TSD,以下简称时序)从定义上来说,就是一串按时间维度索引的数据。用描述性的语言来解释什么是时序数据,简单的说,就是这类数据描述了某个被测量的主体在一个时间范围内的每个时间点上的测量值。它普遍存在于IT基础设施、运维监控系统和物联网中。  对时序数据进行建模的话,会包含三个重要部分,分别是:主体,时间点和测量值。套用这套模型,你会发现你在日常工作生活中,无时无刻不在接触着这类数据。如果你是一个股民,某只股票的股价
转载
博文更新于 2022.04.07 ·
1169 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

####好好好#####强化学习白话解释

强化学习是机器学习里面非常重要的一个派别。智能体 (agent) 会不断执行一些操作,通过结果来学习,在不同的环境中分别应该采取怎样的行动。在一系列教学文章里,我们可以了解不同的架构,来解决强化学习的问题。Q学习,深度Q网络 (DQN) ,策略梯度(Policy Gradients) ,演员-评论家 (Actor-Critic) ,以及近端策略优化 (PPO) 都是将要涉及的算法。这是本系列的第一篇文章,你可以抓住的重点有:· 什么是强化学习,以及为什么奖励最重要· 强化学习的三种方式
转载
博文更新于 2022.03.04 ·
691 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

强化学习核心概念区分

1. 区分强化学习/有监督学习/无监督学习- 这是三种不同的训练方式,核心区别在于loss的设计。- 三者可用于同一 task,就像锤子和砍刀都可以用于砸钉子。- task 选用哪一种工具,取决于获取 loss 所需数据的性价比。比如风格转移,使用Discriminator 判断 sample 是否属于目标域,显然优于一一标记数据集后进行有监督学习。2. 区分 Return(s,a) 和 reward(s,a)- reward(s,a) 是 environment 在状态s下,对行为a的单步奖励
原创
博文更新于 2022.03.03 ·
1134 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

####好好#####利用各种信息作为因子的股票价格预测模型研究过程

完整架构概述在这篇文章中,我将创建一个预测股票价格变动的完整过程。我们将使用生成对抗网络(GAN)与LSTM(一种循环神经网络)作为生成器,使用卷积神经网络CNN作为鉴别器。我们使用LSTM的原因很明显,我们正在尝试预测时间序列数据。为什么我们使用GAN,特别是卷积神经网络(CNN)作为鉴别器呢?这是一个很好的问题:稍后会有特别的部分。当然,我们将详细介绍每个步骤,但最困难的部分是GAN:成功训练GAN的非常棘手的部分是获得正确的超参数集。出于这个原因,我们将使用贝叶斯优化(还有高斯过程)和深度强化学习
原创
博文更新于 2022.03.02 ·
2077 阅读 ·
3 点赞 ·
2 评论 ·
21 收藏

基础扫盲篇--【强化学习】自动股票交易算法

用算法自动交易股票?今天给大家分享最近学习的一篇ICAIF 2020会议论文,《Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy》——深度强化学习在股票自动交易中的应用。背景想象你现在手上有一笔钱要拿来炒股,怎样能在坎坷的股市里获利或者换句话说怎样让钱生钱?思考这个问题之前,先来看看我们是怎么玩超级玛丽的吧。“简单啊,先这样再这样最后就赢啦!”,别急先来个分解动作吧:1. 我们的眼睛观察到了
转载
博文更新于 2022.02.23 ·
2442 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

知网Hownet情感词典.zip

发布资源 2020.05.09 ·
zip

Python金融学基础——夏普比率(Sharpe-ratio)和资产组合价值(portfolio-value)

前面的课程主要是在研究Pandas的时序分析实现,以及利用statsmodel对时序数据进行ARIMA以及有权重的ARIMA模型的建模,并尝试预测未来的走向。从这节课开始,我们正式进入Python金融学基础,会介绍一些金融学的概念和实现方法。本节课主要以苹果、亚马逊、IBM、思科以及沃尔玛的股票市场价格为原始数据,分析这几只股票的资产组合的计算方式和夏普比率的计算,其中会涉及到日收益率、累积收益率的计算等等。本文主要流程:一、基本概念1.1 资产组合我们的资产往往不是单一的
转载
博文更新于 2022.02.09 ·
7568 阅读 ·
3 点赞 ·
0 评论 ·
49 收藏

TA-Lib介绍以及使用

引言TA-Lib,全称“Technical Analysis Library”, 即技术分析库,是Python金融量化的高级库,涵盖了150多种股票、期货交易软件中常用的技术分析指标,如MACD、RSI、KDJ、动量指标、布林带等等。TA-Lib可分为10个子板块:Overlap Studies(重叠指标),Momentum Indicators(动量指标),Volume Indicators(交易量指标),Cycle Indicators(周期指标),Price Transform(价格变换),Vol
转载
博文更新于 2022.02.04 ·
10027 阅读 ·
9 点赞 ·
1 评论 ·
72 收藏

基于FPGA的视频图像采集系统的设计与实现

发布资源 2013.05.06 ·
caj

拆书:麦肯锡结构化战略思维:如何想清楚、说明白、做到位

推荐多样性重排算法之MMR“本文介绍了推荐系统中的多样性重排序算法Maximal Marginal Relevance (a.k.a MMR),并给出了该算法的python实现代码。”文章来源:icebear https://zhuanlan.zhihu.com/p/102285855Maximal Marginal Relevance (a.k.a MMR) 算法目的是减少排序结果的冗余,同时保证结果的相关性。最早应用于文本摘要提取和信息检索等领域。在推荐场景下体现在,给用户推荐相关商品...
转载
博文更新于 2022.01.03 ·
4883 阅读 ·
4 点赞 ·
0 评论 ·
11 收藏

多模态bert-基于双流的bert 笔记 ViLBert、LXMERT、IMAGEBERT

ViLBert paper: ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks基于双流的 ViLBERT,在一开始并未直接对语言信息和图片信息进行融合,而是先各自经过 Transformer 的编码器进行编码。分流设计是基于这样一个假设,语言的理解本身比图像复杂,而且图像的输入本身就是经过 Faster-RCNN 提取的较高层次的特征,因此两者所需要的编码深.
转载
博文更新于 2021.11.03 ·
1022 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

近红外猕猴桃测试分类数据

发布资源 2016.10.24 ·
csv

python列表顺序去重

第一种a=['1', 'c', 'q', 'a', 5, 'c', 'a']d=list(set(a))d.sort(key=a.index)print(d)第二种a=['1', 'c', 'q', 'a', 5, 'c', 'a']d=[]for i in a: if i not in d: d.append(i)print(d)
原创
博文更新于 2021.10.25 ·
415 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

腾讯内容处理和分发中的算法应用探究

近期,腾讯PCG新闻产品技术部算法中心李彪应邀来到腾讯媒体研究院作内部分享,详细梳理了算法应用产品场景,以下为部分内容实录。今天我跟大家分享的主题是算法赋能的内容处理和分发,重点讲一下内容处理。开始之前,先介绍一下算法在腾讯新闻的应用场景。第一个,腾讯新闻APP中各种内容形态(如图文、视频、音频、话题、问答等)的理解和分发,涉及推荐系统,以及AI算法赋能内容的运营。第二个,将腾讯新闻推送到微信,每次一个大图和三条新闻资讯,一共四条,点进去有些底层页能跳转到腾讯新闻APP。第三个,海豚智音
转载
博文更新于 2021.10.12 ·
1027 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

###好好好###今日头条推荐算法原理全文详解

本次分享将主要介绍今日头条推荐系统概览以及内容分析、用户标签、评估分析,内容安全等原理。一、系统概览推荐系统,如果用形式化的方式去描述实际上是拟合一个用户对内容满意度的函数,这个函数需要输入三个维度的变量。第一个维度是内容。头条现在已经是一个综合内容平台,图文、视频、UGC小视频、问答、微头条,每种内容有很多自己的特征,需要考虑怎样提取不同内容类型的特征做好推荐。第二个维度是用户特征。包括各种兴趣标签,职业、年龄、性别等,还有很多模型刻划出的隐式用户兴趣等。第三个维度是环境特征。这是移动
转载
博文更新于 2021.10.12 ·
1289 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

###好好好好##知识图谱在金融风控领域的应用现状

2020年是个人触碰知识图谱时间最多的一年,技术知识的重新梳理和学习,相关项目的参与,几乎从年初持续到年末。一直想总结知识图谱在金融领域的应用现状,但总是挣不脱一个字:乱。最直观的“乱象”是不同机构对这项技术的称呼五花八门——关联网络、关系图谱、复杂网络、知识图谱。严格来讲它们彼此之间紧密相连又有所区别,本文并不打算严谨地去论证它们的区别和联系,请允许我偷懒采用图谱这个名称来泛指这项技术,就是各位所想的——节点-关系网络。图谱之乱远不止此。 金融风控技术演进路线是规则-模型-图谱,对应的技术分别是数
转载
博文更新于 2021.10.12 ·
965 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

SIGIR‘21|SGL基于图自监督学习的推荐系统

本篇文章主要介绍王翔、何向南老师团队在SIGIR2021上发表的文章SGL,Self-supervised Graph Learning for Recommendation[1]。这篇文章提出了一种应用于用户-物品二分图推荐系统的图自监督学习框架。核心的思想是,对输入的二分图,做结点和边的dropout进行数据增强,增强后的图可以看做原始图的子视图;在子视图上使用任意的图卷积神经网络,如LightGCN[2]来提取结点的表征,对于同一个结点,多个视图就能形成多种表征;然后借鉴对比学习[5]的思路,构造自监
转载
博文更新于 2021.10.09 ·
2652 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

基于tiny210的SD卡MP3播放器系统代码

发布资源 2015.07.17 ·
rar
加载更多