一笑为红颜
码龄13年
求更新 关注
提问 私信
  • 博客:21,925
    21,925
    总访问量
  • 14
    原创
  • 4
    粉丝
  • 40
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2013-03-28

个人简介:一个外行人

博客简介:

u010069259的博客

查看详细资料
个人成就
  • 获得17次点赞
  • 内容获得2次评论
  • 获得50次收藏
  • 博客总排名1,300,937名
创作历程
  • 16篇
    2019年
成就勋章
TA的专栏
  • 数学
    7篇
  • 随机过程
    2篇
  • 线性代数
    2篇
  • 矩阵论
    1篇
  • Linux
    1篇
  • 计算机网络
    1篇
  • 操作系统
    6篇
  • 计算机基础
    1篇
  • 概率统计
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

37人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

操作系统学习笔记(一)——绪论

一、绪论1 计算机硬件(1)CPU专用寄存器程序计数器 保存了将要取出的下一条指令的内存地址堆栈指针 指向内存中当前栈的顶端 程序状态字PSW 这个寄存器包含了条件码位、CPU优先级、模式(用户态或内核态),以及其他各种控制位。用户程序通常读入整个PSW,但只对其中少量字段写入,在系统调用和IO中,PSW的作用很重要流水线与超标量CPU取指单元解码单元执行单元取指单元1解码单...
原创
博文更新于 2019.05.05 ·
678 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

随机过程

随机过程1 概率论基础(1)随机变量函数的概率密度对于任意的单调函数g(x)g(x)g(x),都有fY(y)=fX(x)∣J∣x=g−1(y)(J=dxdy)f_Y(y)=f_X(x)|J|_{x=g^{-1}(y)} (J=\frac{dx}{dy})fY​(y)=fX​(x)∣J∣x=g−1(y)​(J=dydx​)对于非单调函数,可以根据单调性分段。例: 考虑一个平方律...
原创
博文更新于 2019.05.05 ·
2918 阅读 ·
4 点赞 ·
0 评论 ·
13 收藏

使用泰勒公式进行估算时,在不同点有啥区别?

转载自https://www.matongxue.com/madocs/206/关于泰勒公式的问题,我写过两个答案了:关于泰勒公式的来源:牛顿插值的几何解释是怎么样的? 泰勒公式本身的理解:如何通俗地解释泰勒公式?关于泰勒公式,之前有一个同学问了我一个问题:这个看似简单的问题,牵扯到一个我认为非常漂亮的数学结论,如果要我说什么让我体会到了数学之美,我一定会选择这个数学结论。...
转载
博文更新于 2019.05.06 ·
4040 阅读 ·
9 点赞 ·
1 评论 ·
18 收藏

协方差与相关系数

在概率论中,两个随机变量 X 与 Y 之间相互关系,大致有下列3种情况:情况一,如上, 当 X, Y 的联合分布像上图那样时,我们可以看出,大致上有: X 越大 Y 也越大, X 越小 Y 也越小,这种情况,我们称为“正相关”。情况二, 如上图, 当X, Y 的联合分布像上图那样时,我们可以看出,大致上有:X 越大Y 反而越小,X 越小 Y 反而越大,这种情况,我们称为“负相关...
原创
博文更新于 2019.05.06 ·
437 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

动态分配与静态分配内存

动态分配与静态分配内存的静态分配和动态分配的区别主要是两个:一是时间不同。静态分配发生在程序编译和连接的时候。动态分配则发生在程序调入和执行的时候。二是空间不同。堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由函数malloc进行分配。不过栈的动态分配和堆不同,他的动态分配是由编译器进行释放,无需我们手工实现。...
原创
博文更新于 2019.05.06 ·
1142 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏

函数调用与栈帧

参考两篇写得不错的博文深入理解计算机系统-函数调用原理函数调用栈函数调用步骤将调用函数下一句代码的地址压入栈中,随后调用被调用函数将原帧指针%ebp寄存器的内容压入栈中将栈顶指针%esp的寄存器内容赋给%ebp寄存器,即将帧指针移动到现在的栈顶将当前需要保存的寄存器内容压入栈中,以便于恢复,因为程序运行中可能会用到这些寄存器,通过寄存器的运算完成程序程序完成后从栈中恢复寄存器...
原创
博文更新于 2019.05.06 ·
193 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

操作系统学习笔记(五)-输入输出

五、输入/输出1 I/O硬件原理(1)I/O设备大致可以分为两类:块设备和字符设备,还有些其他设备,例如时钟,显示器(2)设备控制器(3)内存映射I/O    每个控制器有几个寄存器用来于CPU进行通信,通过写入这些寄存器,操作系统就可以命令设备发送数据、接收数据、开启或关闭。除了这些控制寄存器外,许多设备还有一个操作系统可以读写的数据缓冲区。CPU如何与设备的控制...
原创
博文更新于 2019.05.06 ·
243 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

操作系统学习笔记(四)-文件系统

四、文件系统1 文件系统的实现(1)文件系统布局磁盘的0号扇区称为主引导记录MBR,用来引导计算机。在MBR的结尾是分区表,该表给出了每个分区的起始和结束地址。表中的一个分区被标记为活动分区。一个可能的文件系统布局。(2)文件的实现文件存储实现的关键问题是记录各个文件分别用到哪些磁盘块连续分配  优点实现简单,记录每个文件用到的磁盘块只需两个数据即可记录,第一块的磁盘...
原创
博文更新于 2019.05.06 ·
576 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

操作系统学习笔记(三)-内存管理

三、内存管理1 存储器抽象-地址空间地址空间是一个进程可用于寻址内存的一套地址集合。每个进程都有一个自己的地址空间,并且这个地址空间独立于其他进程的地址空间,除了在某些特殊情况下进程需要共享他们的地址空间外。(1)基址寄存器与界限寄存器实现了重定位,但使用基址寄存器和界限寄存器的缺点是每次访问内存都要进行加法和比较运算,加法运算是复杂运算。(2)交换技术有两种处理内存超载的通用方法,交...
原创
博文更新于 2019.05.05 ·
233 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

操作系统学习笔记(二)——进程与线程

二、进程与线程1 进程(1) 进程的创建、终止和层次结构创建   UNIX中,只有一个系统调用可以创建进程,fork。在UNIX和Windows中,进程创建后,父进程和子进程有各自不同的地址空间,但也有可能共享某些只读数据,可写的内存时不可以共享的,或者通过写时复制的方式终止正常退出出错退出严重错误被其他进程杀死层次结构   在UNIX中,进程和它的所...
原创
博文更新于 2019.05.05 ·
317 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

计算机网络基础

一、绪论1 交换方式电路交换:比如电话,建立真实专用连接,并保证连接的各种资源报文交换:如电报,将报文全部接收,然后转发分组交换:因特网,接收分组,然后转发2 网络性能速率带宽:单位时间内从网络的某一点到另一点所能通过的“最高数据率”吞吐量时延=发送时延+传播时延+处理时延+排队时延往返时间RTT Round-Trip Time 从发送方发送数据开始,到接收到来自接收方的确认...
原创
博文更新于 2019.05.05 ·
742 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

linux基本操作

权限管理1 chmodchmod 对于目录来说    r权限是列出目录内容,针对于ls命令    w权限是创建或删除文件,rm,rmdir,也就是说,如果用户只对文件拥有写权限,而对目录没有写权限,是不能删除文件的    x权限是进入目录 cd2 ACL权限解决用...
原创
博文更新于 2019.05.05 ·
156 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

转自知乎-卷积的理解

一个小例子   楼下早点铺子生意太好了,供不应求,就买了一台机器,不断的生产馒头。假设馒头的生产速度是f(t)f(t)f(t),那么一天后生产出来的馒头总量为:∫024f(t)dt\int_{0}^{24}f(t)dt∫024​f(t)dt馒头生产出来之后,就会慢慢腐败,假设腐败函数为g(t)g(t)g(t),比如,10个馒头,24小时会腐败:10∗g(t)10*g(t)...
转载
博文更新于 2019.05.05 ·
634 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

泊松过程

计数过程如果用N(t)N(t)N(t)表示到时刻ttt为止已发生的“事件AAA”的总数,若N(t)N(t)N(t)满足下列条件:1.N(t)≥0N(t)≥0N(t)≥02.N(t)N(t)N(t)取正整数值3.对任意两个时刻t1&lt;t2t_1&lt;t_2t1​<t2​, 有N(t1)&lt;N(t2)N(t_1)&lt;N(t_2)N(t1​)&...
原创
博文更新于 2019.05.05 ·
5601 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

矩阵论

一、线性空间与线性变换1 线性空间涉及两个概念,集合与数域数域 在抽象代数中,数域是指至少包含0和1的数集,在该集中进行数的和差积商的运算是封闭的线性空间定义: 设VVV是一个非空集合,其中的元素称为向量,F是数域,其中的数称为纯量。在VVV中定义一种运算,称为加法,使得对任意的向量α,β∈V\alpha,\beta \in Vα,β∈V,有α+β∈V\alpha+\beta\in V...
原创
博文更新于 2019.05.05 ·
1881 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

线性代数复习

一、线性与向量1 线性对加法和数乘封闭微积分的基本思想是以直代曲、局部的以切线代替曲线,某种条件下,微分方程可以近似地变为线性代数方程组2 向量乘法内积几何解释 两个向量在同方向的积疑问点 如果想要将一个向量变换到新的坐标系,那么只要对新坐标系轴向量进行内积运算即可???叉积叉积也叫做外积,因为会构造出两个向量构成平面外的向量3 向量除法向量的内积和叉积均没有除法,但是如果同...
原创
博文更新于 2019.05.05 ·
2126 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏
加载更多